Câu hỏi:

10/11/2024 355

Một du khách vào hội chợ và chơi trò chơi ném vòng trúng thưởng. Lần đầu du khách mua 1 lượt ném vòng với giá 1000 đồng, kể từ lần sau tiền mua số lượt ném vòng gấp đôi số tiền lần trước. Người đó thua 10 lần liên tiếp và thắng ở 2 lần cuối. Biết mỗi lần thắng, giá trị phần thưởng của người chơi nhận được gấp đôi số tiền mua ban đầu (không kể số tiền đã đặt). Giá trị phần thưởng cuối cùng người đó nhận được là (1) ________ đồng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: “5121000”

Giải thích

Số tiền mỗi lần du khách mua số lượt ném vòng là một số hạng của một cấp số nhân có \({u_1} = 1000\) và công bội \(q = 2\).

Du khách thua trong 10 lần đầu tiên nên tổng số tiền du khách đã bỏ ra mua lượt ném vòng là

\({S_{10}} = {u_1} + {u_2} +  \ldots  + {u_{10}} = \frac{{{u_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} = 1023000\) (đồng).

Giá trị phần thưởng mà du khách thắng trong 2 lần cuối (lần thứ 11 và 12) là

\(2{u_{11}} + 2{u_{12}} = 2{u_1}\left( {{q^{10}} + {q^{11}}} \right) = 6144000\) (đồng).

Ta có \(2{u_{11}} + 2{u_{12}} - {S_{10}} = 5121000\) nên du khách nhận được 5121000 đồng.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Theo phần dẫn, ta có: Nước có thể tích xác định là do lực tương tác giữa các phân tử nước là lực hút.

 Chọn B

Lời giải

Đáp án: “200/3”

Giải thích

Xét hệ trục tọa độ như hình vẽ với trục đối xứng của Parabol trùng với trục tung, trục hoành trùng với đường tiếp đất của cổng.

Cổng trường Đại học Bách Khoa Hà Nội có hình dạng Parabol, chiều rộng \(8m\), chiều cao 12,5 m.  Diện tích của cổng là (1) ________\({m^2}\). (ảnh 1)

Khi đó Parabol có phương trình dạng \(y = a{x^2} + c\).

Vì \(\left( P \right)\) đi qua đỉnh \(I\left( {0;12,5} \right)\) nên ta có \(c = 12,5\).

\(\left( P \right)\) cắt trục hoành tại hai điểm \(A\left( { - 4;0} \right)\) và \(B\left( {4;0} \right)\) nên ta có \(0 = 16a + c \Rightarrow a = \frac{{ - c}}{{16}} =  - \frac{{25}}{{32}}\).

Do đó \(\left( P \right):y =  - \frac{{25}}{{32}}{x^2} + 12,5\).

Diện tích của cổng là: \(S = \int\limits_{ - 4}^4 {\left( { - \frac{{25}}{{32}}{x^2} + 12,5} \right)dx = \frac{{200}}{3}\left( {{m^2}} \right)} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP