Câu hỏi:

10/11/2024 329

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) đồng thời thỏa mãn điều kiện sau: \({x^2}f\left( {1 - x} \right) + 2f\left( {\frac{{2x - 2}}{x}} \right) = \frac{{ - {x^4} + {x^3} + 4x - 4}}{x},\forall x \ne 0,x \ne 1\). Khi đó \(\int\limits_{ - 1}^1 {f\left( x \right){\rm{d}}x} \) có giá trị bằng bao nhiêu? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải thích

Cách 1:

Từ giả thiết suy ra \(f\left( {1 - x} \right) + \frac{2}{{{x^2}}}f\left( {\frac{{2x - 2}}{x}} \right) = \frac{{ - {x^4} + {x^3} + 4x - 4}}{{{x^3}}}\)

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) đồng thời thỏa mãn điều kiện sau: \({x^2}f\left( {1 - x} \right) + 2f\left( {\frac{{2x - 2}}{x}} \right) = \frac{{ - {x^4} + {x^3} + 4x - 4}}{x},\forall x \ne 0,x \ne 1\). Khi đó \(\int\limits_{ - 1}^1 {f\left( x \right){\rm{d}}x} \) có giá trị bằng bao nhiêu? A. 4.	B. -1.	C. 1.	D. 0. (ảnh 1)

Cách 2:

Ta có: \({x^2}f\left( {1 - x} \right) + 2f\left( {\frac{{2x - 2}}{x}} \right) = \frac{{ - {x^4} + {x^3} + 4x - 4}}{x},\forall x \ne 0,x \ne 1\)

\( \Leftrightarrow {x^2}f\left( {1 - x} \right) + 2f\left( {\frac{{2x - 2}}{x}} \right) = \frac{{ - {x^4} + {x^3}}}{x} + \frac{{4x - 4}}{x},\forall x \ne 0,x \ne 1\)

\( \Leftrightarrow {x^2}f\left( {1 - x} \right) + 2f\left( {\frac{{2x - 2}}{x}} \right) = {x^2}\left( {1 - x} \right) + 2\left( {\frac{{2x - 2}}{x}} \right),\forall x \ne 0,x \ne 1\)

Chọn fx=x11fx.dx=11x.dx=0

 Chọn D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Lực liên kết giữa các phân tử nước là 

Xem đáp án » 04/07/2024 5,694

Câu 2:

Cổng trường Đại học Bách Khoa Hà Nội có hình dạng Parabol, chiều rộng \(8m\), chiều cao 12,5 m.  Diện tích của cổng là (1) ________\({m^2}\).

Xem đáp án » 10/11/2024 4,911

Câu 3:

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, biết \(AB = 2a,AD = a,SA = 3a\) và \(SA\) vuông góc với mặt phẳng đáy. Gọi \(M\) là trung điểm cạnh \(CD\), điểm \(E \in SA\) sao cho \(SE = a\).

Mỗi phát biểu sau đây là đúng hay sai?

Phát biểu

ĐÚNG

SAI

Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BME} \right)\) bằng \(\frac{{a\sqrt {70} }}{7}\).

   

Cosin của góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {BME} \right)\) bằng \(\frac{1}{{\sqrt {15} }}\).

   

Xem đáp án » 10/11/2024 3,364

Câu 4:

Phát biểu sau đây đúng hay sai? 

Phản ứng với dung dịch NaOH chứng minh nhóm chức -OH phenol có lực axit mạnh hơn nhóm chức -OH ancol.

Xem đáp án » 04/07/2024 2,648

Câu 5:

Cho đa giác lồi có n cạnh (n ≥ 4) thỏa mãn đa giác có số đường chéo bằng số cạnh. Biết 3 đường chéo cùng đi qua 1 đỉnh của đa giác không đồng quy. Số giao điểm (không kể đỉnh) của các đường chéo là 

Xem đáp án » 10/11/2024 1,803

Câu 6:

Các mẫu dịch có môi trường acid là 

Xem đáp án » 04/07/2024 1,717

Câu 7:

Phát biểu nào sau đây là đúng khi nói về đặc điểm của ánh sáng khả kiến? 

Xem đáp án » 04/07/2024 1,167
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua