Câu hỏi:
12/11/2024 9,140Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị \(y = f'\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = f\left( {x - m} \right) - \frac{1}{2}{(x - m - 1)^2} + 2023\), với \(m\) là tham số thực. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = g\left( x \right)\) đồng biến trên khoảng \(\left( {5;6} \right)\). Tổng tất cả các phần tử trong \(S\) bằng (1) ________.
Quảng cáo
Trả lời:
Đáp án: “14”
Giải thích
Xét hàm số \(g\left( x \right) = f\left( {x - m} \right) - \frac{1}{2}{(x - m - 1)^2} + 2023\).
\(g'\left( x \right) = f'\left( {x - m} \right) - \left( {x - m - 1} \right)\). Xét phương trình \(g'\left( x \right) = 0{\rm{\;}}\) (1).
Đặt \(x - m = t\), phương trình (1) trở thành \(f'\left( t \right) - \left( {t - 1} \right) = 0 \Leftrightarrow f'\left( t \right) = t - 1{\rm{\;}}\) (2).
Nghiệm của phương trình \(\left( 2 \right)\) là hoành độ giao điểm của hai đồ thị \(y = f'\left( t \right)\) và \(y = t - 1\).
Ta có đồ thị các hàm số \(y = f'\left( t \right)\) và \(y = t - 1\) như sau:
Căn cứ đồ thị các hàm số thì phương trình \(\left( 2 \right)\) có nghiệm là \(\left[ {\begin{array}{*{20}{c}}{t = - 1}\\{t = 1}\\{t = 3}\end{array} \Rightarrow \left[ {\begin{array}{*{20}{l}}{x = m - 1}\\{x = m + 1}\\{x = m + 3}\end{array}} \right.} \right.\)
Ta có bảng biến thiên của \(y = g\left( x \right)\) như sau:
Để hàm số \(y = g\left( x \right)\) đồng biến trên khoảng \(\left( {5;6} \right)\) thì \(\left[ {\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{m - 1 \le 5}\\{m + 1 \ge 6}\end{array}} \right.}\\{m + 3 \le 5}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{5 \le m \le 6}\\{m \le 2}\end{array}} \right.\)
Vì \(m \in \mathbb{N}{\rm{*}} \Rightarrow m \in \left\{ {1;2;5;6} \right\} \Rightarrow S = 14\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Một cửa hàng điện máy có doanh số bán lẻ tivi mỗi năm là 2500 chiếc. Chi phí lưu kho của mỗi chiếc tivi là 200 nghìn đồng một năm. Để đặt hàng nhà sản xuất, mỗi lần cửa hàng cần đặt cọc cố định là 10 triệu đồng và sau khi nhập hàng thì cần trả thêm 3 triệu đồng mỗi chiếc tivi. Biết rằng số lượng tivi trung bình gửi trong kho bằng một nửa số tivi của mỗi lần đặt hàng. Cửa hàng nên đặt hàng nhà sản xuất (1) ___5___ lần mỗi năm và mỗi lần đặt (2) __500__ chiếc tivi để chi phí hàng tồn kho là thấp nhất.
Giải thích
Gọi \(x\) là số tivi mỗi lần đặt hàng \(\left( {x \in \mathbb{N},x \in \left[ {1;2500} \right]} \right)\).
Khi đó, số lượng tivi trung bình gửi trong kho sẽ là \(\frac{x}{2}\). Do đó, chi phí gửi hàng trong kho mỗi năm sẽ là \(0,2.\frac{x}{2} = \frac{x}{{10}}\).
Số lần đặt hàng mỗi năm sẽ là \(\frac{{2500}}{x}\).
Do đó chi phí đặt hàng mỗi năm sẽ là \(\left( {10 + 3x} \right).\frac{{2500}}{x} = \frac{{25000}}{x} + 7500\).
Suy ra, chi phí hàng tồn kho là \(C\left( x \right) = \frac{x}{{10}} + \frac{{25000}}{x} + 7500\).
Bài toán trở thành tìm giá trị nhỏ nhất của \(C\left( x \right)\) với \(x \in \left[ {1;2500} \right]\).
Ta có: \(C'\left( x \right) = \frac{1}{{10}} - \frac{{25000}}{{{x^2}}},C'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 500}\\{x = - 500\left( L \right)}\end{array}} \right.\)
Bảng biến thiên:
Vậy \(\mathop {{\rm{min}}}\limits_{\left[ {1;2500} \right]} C\left( x \right) = C\left( {500} \right) = 7600\)
Khi đó số lần đặt hàng mỗi năm sẽ là \(\frac{{2500}}{{500}} = 5\) lần.
Vậy để chi phí hàng tồn kho là nhỏ nhất thì cửa hàng cần đặt hàng 5 lần mỗi năm và 500 cái mỗi lần.
Lời giải
Đáp án
Có 1140 tam giác có đúng 3 đỉnh được lấy từ các đỉnh của (H).
Có 20 tam giác có đúng hai cạnh là cạnh của (H).
Có 320 tam giác có đúng một cạnh là cạnh của (H).
Có 800 tam giác không có cạnh nào là cạnh của (H).
Giải thích
a) Mỗi tam giác được tạo thành từ 3 trong số 20 đỉnh của đa giác (H) ứng với một tổ hợp chập 3 của 20 phần tử.
Vậy có tất cả \(C_{20}^3 = 1140\) tam giác.
b) Chọn đỉnh thứ nhất của tam giác là đỉnh của \(\left( H \right)\) nên có 20 cách.
Chọn hai đỉnh còn lại của tam giác kề với đỉnh đã chọn (bên trái và bên phải) nên có 1 cách.
Vậy có tất cả \(20.1 = 20\) tam giác.
c) Chọn một cạnh của tam giác là cạnh của đa giác \(\left( H \right)\) nên có 20 cách.
Chọn đỉnh còn lại của tam giác không kề với 2 đỉnh đã chọn nên có \(20 - 4 = 16\) cách.
Vậy số tam giác có một cạnh là cạnh của đa giác là \(20.16 = 320\) tam giác.
d) Số tam giác không có cạnh nào là cạnh của đa giác là \(1140 - \left( {20 + 320} \right) = 800\) tam giác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 29)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)