Câu hỏi:
12/11/2024 1,180Quảng cáo
Trả lời:
Giải thích
Ta có:
\({\left( {{x^2} + 1} \right)^n} = C_n^0{x^{2n}} + C_n^1{x^{2n - 2}} + C_n^2{x^{2n - 4}} + \ldots + C_n^n\)
\({(x + 2)^n} = C_n^0{x^n} + 2C_n^1{x^{n - 1}} + {2^2}C_n^2{x^{n - 2}} + \ldots + {2^n}C_n^n\)
Ta thấy \(n = 1,n = 2\) không thoả mãn điều kiện bài toán.
Với \(n \ge 3\) ta có: \({x^{3n - 3}} = {x^{2n}}.{x^{n - 3}} = {x^{2n - 2}}.{x^{n - 1}}\)
Do đó hệ số của \({x^{3n - 3}}\) trong khai triển thành đa thức của \({\left( {{x^2} + 1} \right)^n}{(x + 2)^n}\) Ià:
\({a_{3n - 3}} = {2^3}.C_n^0.C_n^3 + 2.C_n^1.C_n^1\).
\( \Rightarrow {a_{3n - 3}} = 26n \Leftrightarrow \frac{{2n\left( {2{n^2} - 3n + 4} \right)}}{3} = 26n \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 0\left( L \right)}\\{n = - \frac{7}{2}\left( L \right).}\\{n = 5\left( {t/m} \right)}\end{array}} \right.\)
Vậy \(n = 5\) là giá trị cần tìm.
Chọn C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị \(y = f'\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = f\left( {x - m} \right) - \frac{1}{2}{(x - m - 1)^2} + 2023\), với \(m\) là tham số thực. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = g\left( x \right)\) đồng biến trên khoảng \(\left( {5;6} \right)\). Tổng tất cả các phần tử trong \(S\) bằng (1) ________.
Câu 2:
Trong mặt phẳng cho đa giác đều (H) có 20 cạnh. Xét tam giác có đúng 3 đỉnh được lấy từ các đỉnh của (H).
Có _______ tam giác có đúng 3 đỉnh được lấy từ các đỉnh của (H).
Có _______ tam giác có đúng hai cạnh là cạnh của (H).
Có _______ tam giác có đúng một cạnh là cạnh của (H).
Có _______ tam giác không có cạnh nào là cạnh của (H).
Câu 3:
Một cửa hàng điện máy có doanh số bán lẻ tivi mỗi năm là 2500 chiếc. Chi phí lưu kho của mỗi chiếc tivi là 200 nghìn đồng một năm. Để đặt hàng nhà sản xuất, mỗi lần cửa hàng cần đặt cọc cố định là 10 triệu đồng và sau khi nhập hàng thì cần trả thêm 3 triệu đồng mỗi chiếc tivi. Biết rằng số lượng tivi trung bình gửi trong kho bằng một nửa số tivi của mỗi lần đặt hàng. Cửa hàng nên đặt hàng nhà sản xuất (1) _______ lần mỗi năm và mỗi lần đặt (2) ________ chiếc tivi để chi phí hàng tồn kho là thấp nhất.
Câu 4:
Diện tích mặt tròn xoay tạo thành khi quay đường cong \(f\left( x \right)\) quanh trục hoành giới hạn giữa hai mặt phẳng \(x = a,x = b\) được tính bởi công thức \(S = 2\pi \int\limits_a^b {\left| {f\left( x \right)} \right|\sqrt {1 + {{\left[ {f'\left( x \right)} \right]}^2}} {\rm{\;d}}x} \).
Một bình hoa có dạng hình cầu khuyết như hình vẽ. Biết đường kính của bình hoa là \(20{\rm{\;cm}}\) và đường kính đáy/miệng của bình hoa là \(12{\rm{\;cm}}\). Diện tích tráng men mặt ngoài (kể cả đáy) của bình hoa bằng (1) _________ \(c{m^2}\). (Kết quả làm tròn đến chữ số thập phân thứ hai)
Câu 5:
Phát biểu sau đúng hay sai?
Khi tách hai chất lỏng tan vào nhau bằng phương pháp chưng cất, tính chất vật lí được quan tâm là tính tan của các chất trong dung môi.
Câu 6:
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 15)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 3)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 5)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận