Câu hỏi:

12/11/2024 108

Cho hàm đa thức bậc ba \[y = f(x)\;\] có đồ thị như hình vẽ sau:

Cho hàm đa thức bậc ba y =f(x) có đồ thị như hình vẽ sau: Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? (ảnh 1)

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

 

ĐÚNG

SAI

Với \({x_1};{x_2} \in \left( {a;b} \right)\) thỏa mãn \({x_1} < {x_2} < 0\) thì \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\)

   

Với \({x_0} \in \left( {a;0} \right)\) thì \(f'\left( {{x_0}} \right) < 0\)

   

Với \({x_0} \in \left( {0;b} \right)\) thì \(f\left( {{x_0}} \right) < f\left( a \right)\)

   

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số

 

ĐÚNG

SAI

Với \({x_1};{x_2} \in \left( {a;b} \right)\) thỏa mãn \({x_1} < {x_2} < 0\) thì \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\)

  X

Với \({x_0} \in \left( {a;0} \right)\) thì \(f'\left( {{x_0}} \right) < 0\)

X  

Với \({x_0} \in \left( {0;b} \right)\) thì \(f\left( {{x_0}} \right) < f\left( a \right)\)

X  

Phương pháp giải

Cho hàm số \(y = f\left( x \right)\) xác định trên \(K\) (\(K\) có thể là một khoảng, đoạn hoặc nửa khoảng)

- Hàm số \(y = f\left( x \right)\) được gọi là đồng biến trên \(K\) nếu \(\forall {x_1},{x_2} \in K:{x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\)

- Hàm số \(y = f\left( x \right)\) được gọi là nghịch biến trên \(K\) nếu \(\forall {x_1},{x_2} \in K:{x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\).

Lời giải

+) Với \({x_1};{x_2} \in \left( {a;b} \right)\) thỏa mãn \({x_1} < {x_2} < 0\) thì \({x_1};{x_2} \in \left( {a;0} \right)\)

Mà hàm số nghịch biến trên \(\left( {a;0} \right)\) nên \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)

=> Mệnh đề 1 sai

+) Hàm số nghịch biến trên \(\left( {a;0} \right)\) nên với \({x_0} \in \left( {a;0} \right)\) thì \(f'\left( {{x_0}} \right) < 0\)

=> Mệnh đề 2 đúng

+) Quan sát đồ thị ta thấy khi \(x \in \left[ {a;b} \right]\) thì \(\mathop {{\rm{max}}}\limits_{\left[ {a;b} \right]} f\left( x \right) = f\left( a \right)\)

Khi đó với \({x_0} \in \left( {0;b} \right)\) thì \(f\left( {{x_0}} \right) < f\left( a \right)\)

=> Mệnh đề 3 đúng

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nhận định dưới đây là đúng hay sai?

Trong quá trình chưng cất rượu nấu, tỉ lệ etanol/nước giảm dần.

Xem đáp án » 05/07/2024 4,487

Câu 2:

Phần tư duy khoa học / giải quyết vấn đề

Điền cụm từ (tối đa 03 từ) vào chỗ trống:

Với máy nước nóng, nguyên lí truyền nhiệt sẽ là _______

Xem đáp án » 13/07/2024 1,429

Câu 3:

Nội dung chính của đoạn trích trên là gì?

Xem đáp án » 05/07/2024 1,296

Câu 4:

Phần tư duy đọc hiểu

Hoàn thành câu hỏi bằng cách chọn đáp án Đúng hoặc Sai.

Con người có xu hướng liên kết những màu sắc ấm với cảm nhận nhiệt độ cao.

Xem đáp án » 05/07/2024 943

Câu 5:

Chọn các đáp án chính xác

Nhóm sinh vật nào sau đây được cấu tạo từ tế bào nhân sơ?

Xem đáp án » 05/07/2024 488

Câu 6:

Tính \({\rm{lim}}\frac{{{{( - 1)}^n}{{.2}^{5n + 1}}}}{{{3^{5n + 2}}}}\)

Xem đáp án » 12/11/2024 477

Câu 7:

Tìm \(m\) để góc giữa hai vectơ \(\vec u = \left( {1;{\rm{lo}}{{\rm{g}}_3}5;{\rm{lo}}{{\rm{g}}_m}2} \right),\vec v = \left( {3;{\rm{lo}}{{\rm{g}}_5}3;4} \right)\) là góc nhọn. 

Xem đáp án » 12/11/2024 428

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store