Câu hỏi:
12/11/2024 910
Trong một lớp có \(2n + 1\) học sinh gồm An, Bình, Chi cùng \(2n - 2\) học sinh khác. Khi xếp tùy ý các học sinh này vào một dãy ghế được đánh số từ 1 đến \(2n + 1\), mỗi học sinh ngồi một ghế thì xác suất để số ghế của An, Bình, Chi theo thứ tự lập thành một cấp số cộng là \(\frac{{31}}{{4368}}\).
Số học sinh của lớp là _______
Trong một lớp có \(2n + 1\) học sinh gồm An, Bình, Chi cùng \(2n - 2\) học sinh khác. Khi xếp tùy ý các học sinh này vào một dãy ghế được đánh số từ 1 đến \(2n + 1\), mỗi học sinh ngồi một ghế thì xác suất để số ghế của An, Bình, Chi theo thứ tự lập thành một cấp số cộng là \(\frac{{31}}{{4368}}\).
Số học sinh của lớp là _______
Quảng cáo
Trả lời:
Đáp án: “32”
Phương pháp giải
Số cách các xếp học sinh vào ghế là \(\left( {2n + 1} \right)\)!
Nhận xét rằng nếu ba số tự nhiên \({\rm{a}},{\rm{b}},{\rm{c}}\) lập thành một cấp số cộng thì \(a + c = 2b\) nên \(a + c\) là số chẵn. Như vậy \(a,c\) phải cùng chẵn hoặc cùng lẻ.
Lời giải
Số cách các xếp học sinh vào ghế là \(\left( {2n + 1} \right)\)!
Nhận xét rằng nếu ba số tự nhiên \({\rm{a}},{\rm{b}},{\rm{c}}\) lập thành một cấp số cộng thì \(a + c = 2b\) nên \(a + c\) là số chẵn. Như vậy \(a,c\) phải cùng chẵn hoặc cùng lẻ.
Từ 1 đến \(2n - 2\) có \(n - 1\) số chẵn và \(n - 1\) số lẻ.
Muốn có một cách xếp học sinh thỏa số ghế của An, Bình, Chi theo thứ tự lập thành một cấp số cộng ta sẽ tiến hành như sau:
- Bước 1: Chọn hai ghế có số thứ tự cùng chẵn hoặc cùng lẻ rồi xếp An và Chi vào, sau đó xếp Bình vào ghế chính giữa. Bước này có \(A_{n - 1}^2 + A_{n - 1}^2\) cách.
- Bước 2: Xếp chỗ cho \(2n - 2\) học sinh còn lại. Bước này có \(\left( {2n - 2} \right)\)!
Như vậy số cách xếp thỏa theo yêu cầu này là \(2A_{n - 1}^2.\left( {2n - 2} \right)\)!
Ta có phương trình \(\frac{{2A_{n - 1}^2.\left( {2n - 2} \right)!}}{{\left( {2n + 1} \right)!}} \Leftrightarrow \frac{{2.\frac{{\left( {n - 1} \right)!}}{{\left( {n - 3} \right)!}}.\left( {2n - 2} \right)!}}{{\left( {2n + 1} \right)!}} = \frac{{31}}{{4368}}\)
\( \Leftrightarrow \frac{{2.\left( {n - 1} \right)\left( {n - 2} \right)}}{{\left( {2n + 1} \right).2n.\left( {2n - 1} \right)}} = \frac{{31}}{{4368}}\)
\( \Leftrightarrow \frac{{{n^2} - 3n + 2}}{{n.\left( {4{n^2} - 1} \right)}} = \frac{{31}}{{4368}}\)
\( \Leftrightarrow 31.\left( {4{n^3} - n} \right) = 4368\left( {{n^2} - 3n + 2} \right)\)
\( \Leftrightarrow 124{n^3} - 4368{n^2} + 13073n - 8736 = 0\)
\( \Leftrightarrow n = 32\) (do n \(n \in {\mathbb{N}^*}\))
Vậy số học sinh của lớp là 32.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải
Dựa vào nhiệt độ sôi của nước và etanol, chất nào bay hơi trước thì sẽ giảm nồng độ trước.
Lời giải
Khi chưng cất rượu nấu, etanol có nhiệt độ sôi thấp hơn nước sẽ bay hơi trước nên tỉ lệ etanol/nước sẽ tăng dần. Vậy nhận định trên là nhận định sai.
Chọn B
Lời giải
Phương pháp giải
Lời giải
Để \(\widehat {\vec u,\vec v)} < {90^ \circ } \Rightarrow {\rm{cos}}\widehat {\left( {\vec u,\vec v} \right)} > 0\).
\( \Rightarrow \vec u.\vec v > 0 \Leftrightarrow 3 + {\rm{lo}}{{\rm{g}}_3}5.{\rm{lo}}{{\rm{g}}_5}3 + 4{\rm{lo}}{{\rm{g}}_m}2 > 0\)
\( \Leftrightarrow 4 + 4{\rm{lo}}{{\rm{g}}_m}2 > 0 \Leftrightarrow {\rm{lo}}{{\rm{g}}_m}2 > - 1 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m > 1}\\{m < \frac{1}{2}}\end{array}} \right.\).
Kết hợp điều kiện \(m > 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}{m > 1}\\{0 < m < \frac{1}{2}}\end{array}} \right.\)
Chọn D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.