Câu hỏi:

19/08/2025 436 Lưu

Cho một cái hộp có nắp có dạng hình trụ có bán kính đáy là 10cm và khoảng cách giữa hai đáy là 56cm. Thả các quả bóng có dạng hình cầu vào trong hộp sao cho các quả bóng tiếp xúc với thành hộp theo một đường tròn và tiếp xúc với nhau. Gọi (P) là mặt phẳng song song với trục và cắt hình trụ theo thiết diện ABCD.

Mỗi phát biểu sau đây là đúng hay sai?

Phát biểu

ĐÚNG

SAI

Thể tích của hộp là \(5600\pi {\rm{c}}{{\rm{m}}^3}\).

   

Hộp đựng được tối đa 4 quả bóng.

   

Để diện tích \(ABCD\) bằng \(80{\rm{\;c}}{{\rm{m}}^2}\) thì khoảng cách từ trục đến mặt phẳng \(\left( P \right)\) là \(\frac{{465}}{{49}}{\rm{\;cm}}\).

   

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án

Phát biểu

ĐÚNG

SAI

Thể tích của hộp là \(5600\pi {\rm{c}}{{\rm{m}}^3}\).

X  

Hộp đựng được tối đa 4 quả bóng.

  X

Để diện tích \(ABCD\) bằng \(80{\rm{\;c}}{{\rm{m}}^2}\) thì khoảng cách từ trục đến mặt phẳng \(\left( P \right)\) là \(\frac{{465}}{{49}}{\rm{\;cm}}\).

  X

Giải thích

Thể tích của hộp là \(V = \pi {R^2}h = \pi {.10^2}.56 = 5600\pi \left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Tổng chiều cao của \(n\) quả bóng thả trong hộp là: \(2nR = 2n.10 = 20n\).

Ta có: \(20n \le 56 \Leftrightarrow n \le 2,8\).

Vậy hộp chỉ đựng được tối đa 2 quả bóng.

Cho một cái hộp có nắp có dạng hình trụ có bán kính đáy là 10cm và khoảng cách giữa hai đáy là 56cm. Thả các quả bóng có dạng hình cầu vào trong hộp sao (ảnh 1)

Vì \(\left( P \right)//OO'\) nên \(d\left( {OO';\left( P \right)} \right) = d\left( {O;\left( P \right)} \right) = OH\) (với \(H\) là trung điểm cạnh \(AB\))

Ta có: \({S_{ABCD}} = 80 \Leftrightarrow AB.AD = 80 \Leftrightarrow AB = \frac{{10}}{7}\left( {AD = h = 56} \right)\)

\( \Leftrightarrow 2BH = \frac{{10}}{7} \Leftrightarrow \sqrt {{R^2} - O{H^2}}  = \frac{5}{7} \Leftrightarrow OH = \frac{{5\sqrt {149} }}{7}\left( {{\rm{cm}}} \right)\)

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án

Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { - 1} \right) =  - 1\). Giá trị của \(F\left( 4 \right) + F\left( 6 \right)\) bằng (1) __5__.

Giải thích

Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}1&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2}&{{\rm{\;khi\;}}2 \le x \le 6}\end{array}} \right.\).

Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + {C_1}}&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}}&{{\rm{khi\;}}2 \le x \le 6\,\,\,}\end{array}} \right.\).

Ta có \(F\left( { - 1} \right) =  - 1 \Leftrightarrow  - 1 + {C_1} =  - 1 \Leftrightarrow {C_1} = 0\).

Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\).

\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)

Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\) và có đồ thị là đường gấp khúc \(ABC\) như hình vẽ    Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { - 1} \right) =  - 1\). Giá trị của \(F\left( 4 \right) + F\left( 6 \right)\) bằng (1) _______. (ảnh 2)

Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{c}}x&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1}&{{\rm{khi\;}}2 \le x \le 6\,\,}\end{array}} \right.\).

Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).

 

Lời giải

Giải thích

Số các số thuộc \(M\) là \(A_5^3 + A_5^4 + A_5^5 = 300\).

Các tập con của \(E\) có tổng các phần tử bằng 10 gồm \({E_1} = \left\{ {1;2;3;4} \right\},{E_2} = \left\{ {2;3;5} \right\}\),\({E_3} = \left\{ {1;4;5} \right\}\).

Gọi \(A\) là tập con của \(M\) sao cho mỗi số thuộc \(A\) có tổng các chữ số bằng 10 .

Từ \({E_1}\) lập được số các số thuộc \(A\) là 4!.

Từ mỗi tập \({E_2}\) và \({E_3}\) lập được các số thuộc \(A\) là 3!.

Suy ra số phần tử của \(A\) là \(4! + 2.3! = 36\).

Xác suất cần tìm là \(P = \frac{{36}}{{300}} = \frac{3}{{25}}\).

 Chọn B