Cho hình nón \(\left( N \right)\) có đường cao \(SO = 9\) và bán kính đáy bằng \(R\), gọi \(M\) là điểm thuộc đoạn \(SO\) sao cho \(OM = x\,\,(0 < x < 9)\). Mặt phẳng \(\left( P \right)\) vuông góc với trục \(SO\) tại \(M\) giao với hình nón \(\left( N \right)\) theo thiết diện là đường tròn \(\left( C \right)\). Giá trị của \(x\) bằng (1) ______ để khối nón có đỉnh là điểm \(O\) và đáy là hình tròn \(\left( C \right)\) có thể tích lớn nhất.
Cho hình nón \(\left( N \right)\) có đường cao \(SO = 9\) và bán kính đáy bằng \(R\), gọi \(M\) là điểm thuộc đoạn \(SO\) sao cho \(OM = x\,\,(0 < x < 9)\). Mặt phẳng \(\left( P \right)\) vuông góc với trục \(SO\) tại \(M\) giao với hình nón \(\left( N \right)\) theo thiết diện là đường tròn \(\left( C \right)\). Giá trị của \(x\) bằng (1) ______ để khối nón có đỉnh là điểm \(O\) và đáy là hình tròn \(\left( C \right)\) có thể tích lớn nhất.
Quảng cáo
Trả lời:

Đáp án
Cho hình nón \(\left( N \right)\) có đường cao \(SO = 9\) và bán kính đáy bằng \(R\), gọi \(M\) là điểm thuộc đoạn \(SO\) sao cho \(OM = x\,\,(0 < x < 9)\). Mặt phẳng \(\left( P \right)\) vuông góc với trục \(SO\) tại \(M\) giao với hình nón \(\left( N \right)\) theo thiết diện là đường tròn \(\left( C \right)\). Giá trị của \(x\) bằng (1) ___3___ để khối nón có đỉnh là điểm \(O\) và đáy là hình tròn \(\left( C \right)\) có thể tích lớn nhất.
Giải thích

Gọi \(BC\) là đường kính của \(\left( C \right)\) và \(AD\) là đường kính đường tròn đáy của \(\left( N \right)\) sao cho \(BC//AD\),
\(S,A,B\) thẳng hàng \( \Rightarrow S,C,D\) thẳng hàng.
Ta có \(r = BM\) là bán kính đường tròn \(\left( C \right)\).
Vì nên \(\frac{{BM}}{{AO}} = \frac{{SM}}{{SO}} \Leftrightarrow r = \frac{{AO.SM}}{{SO}} \Leftrightarrow r = \frac{{R\left( {9 - x} \right)}}{9}\).
Thể tích của khối nón có đỉnh là \(O\), đáy là \(\left( C \right)\) là
\(V = \frac{1}{3}\pi {r^2}.OM = \frac{1}{3}\pi {\left[ {\frac{{R\left( {9 - x} \right)}}{9}} \right]^2}x = \frac{1}{{243}}\pi {R^2}{(9 - x)^2}x\).
Xét hàm số \(f\left( x \right) = \frac{1}{{243}}\pi {R^2}{(9 - x)^2}x,(0 < x < 9)\) ta có:
Ta có \(f'\left( x \right) = \frac{1}{{243}}\pi {R^2}\left( {9 - x} \right)\left( {9 - 3x} \right)\);
\(f'\left( x \right) = 0 \Leftrightarrow \frac{1}{{243}}\pi {R^2}\left( {9 - x} \right)\left( {9 - 3x} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 9\left( L \right)}\\{x = 3\left( {tm} \right)}\end{array}} \right.\).
Lập bảng biến thiên ta có:

Từ bảng biến thiên ta có thể tích khối nón có đỉnh là \(O\), đáy là \(\left( C \right)\) Iớn nhất khi \(x = 3\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { - 1} \right) = - 1\). Giá trị của \(F\left( 4 \right) + F\left( 6 \right)\) bằng (1) __5__.
Giải thích
Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}1&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2}&{{\rm{\;khi\;}}2 \le x \le 6}\end{array}} \right.\).
Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + {C_1}}&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}}&{{\rm{khi\;}}2 \le x \le 6\,\,\,}\end{array}} \right.\).
Ta có \(F\left( { - 1} \right) = - 1 \Leftrightarrow - 1 + {C_1} = - 1 \Leftrightarrow {C_1} = 0\).
Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\).
\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)
![Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\) và có đồ thị là đường gấp khúc \(ABC\) như hình vẽ Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { - 1} \right) = - 1\). Giá trị của \(F\left( 4 \right) + F\left( 6 \right)\) bằng (1) _______. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2024/11/blobid12-1731398079.png)
Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{c}}x&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1}&{{\rm{khi\;}}2 \le x \le 6\,\,}\end{array}} \right.\).
Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).
Câu 2
Lời giải
Giải thích
Số các số thuộc \(M\) là \(A_5^3 + A_5^4 + A_5^5 = 300\).
Các tập con của \(E\) có tổng các phần tử bằng 10 gồm \({E_1} = \left\{ {1;2;3;4} \right\},{E_2} = \left\{ {2;3;5} \right\}\),\({E_3} = \left\{ {1;4;5} \right\}\).
Gọi \(A\) là tập con của \(M\) sao cho mỗi số thuộc \(A\) có tổng các chữ số bằng 10 .
Từ \({E_1}\) lập được số các số thuộc \(A\) là 4!.
Từ mỗi tập \({E_2}\) và \({E_3}\) lập được các số thuộc \(A\) là 3!.
Suy ra số phần tử của \(A\) là \(4! + 2.3! = 36\).
Xác suất cần tìm là \(P = \frac{{36}}{{300}} = \frac{3}{{25}}\).
Chọn B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.