Câu hỏi:

12/11/2024 1,059

Cho tam giác \[ABC\] cân tại \[A.\] Vẽ đường tròn tâm \[O\] đường kính \[BC.\] Đường tròn \[\left( O \right)\] cắt \[AB,AC\] lần lượt tại \[I,K.\] Biết \[\widehat {BAC} = 40^\circ .\] Số đo của cung nhỏ \(IK\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tam giác  A B C  cân tại  A .  Vẽ đường tròn tâm  O  đường kính  B C .  Đường tròn  ( O )  cắt  A B , A C  lần lượt tại  I , K .  Biết  ˆ B A C = 40 ∘ .  Số đo của cung nhỏ  I K  bằng (ảnh 1)

Vì tam giác \[ABC\] cân tại \[A\] nên \[\widehat {ABC} = \widehat {ACB}.\]

Tam giác\[ABC,\] có: \[\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \] (định lí tổng ba góc của một tam giác)

Suy ra \[2\widehat {ACB} = 180^\circ - \widehat {BAC} = 180^\circ - 40^\circ = 140^\circ .\]

Do đó \[\widehat {ACB} = 70^\circ .\] Vì vậy \[\widehat {ABC} = \widehat {ACB} = 70^\circ .\]

Vì tam giác \[OBI\] cân tại \[O\] (do \[OI = OB\]) nên \[\widehat {IBO} = \widehat {BIO} = 70^\circ .\]

Tam giác \[OBI,\] có: \[\widehat {BOI} + \widehat {IBO} + \widehat {BIO} = 180^\circ \] (định lí tổng ba góc của một tam giác)

Suy ra \[\widehat {BOI} = 180^\circ - \left( {\widehat {IBO} + \widehat {BIO}} \right) = 180^\circ - \left( {70^\circ + 70^\circ } \right) = 40^\circ .\]

Thực hiện tương tự, ta thu được \[\widehat {COK} = 40^\circ .\]

Đường tròn \[\left( O \right)\] có \[BC\] là đường kính hay ba điểm \(B,\,\,O,\,\,C\) thằng hàng, đo dó \[\widehat {BOC} = 180^\circ \] nên \[\widehat {BOI} + \widehat {IOK} + \widehat {COK} = 180^\circ \]

Suy ra \[\widehat {IOK} = 180^\circ - \left( {\widehat {BOI} + \widehat {COK}} \right) = 180^\circ - \left( {40^\circ + 40^\circ } \right) = 100^\circ .\]

Vậy

Do đó ta chọn phương án D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \[\left( {O;R} \right)\] và dây \[AB.\] Trên cung nhỏ \[AB\] lấy hai điểm \[M,\,\,N\] sao cho \[AM = BN\] \[(M\] nằm trên cung nhỏ \[AN).\] Kết luận nào sau đây đúng?

Xem đáp án » 12/11/2024 849

Câu 2:

II. Thông hiểu

Cho đường tròn \(\left( O \right)\) đi qua hai điểm \(A,\,\,B\). Biết \(\widehat {AOB} = 100^\circ \) thì số đo của cung lớn \(AB\) là

Xem đáp án » 12/11/2024 736

Câu 3:

Trong một trò chơi, hai bạn Thủy và Tiến cùng chạy trên một đường tròn tâm \[O\] có bán kính \[20{\rm{\;m}}\] (hình vẽ).

Trong một trò chơi, hai bạn Thủy và Tiến cùng chạy trên một đường tròn tâm  O  có bán kính  20 m  (hình vẽ). Độ dài dây  A B  nối vị trí của hai bạn đó không thể bằng bao nhiêu mét? (ảnh 1)

Độ dài dây \[AB\] nối vị trí của hai bạn đó không thể bằng bao nhiêu mét?

Xem đáp án » 12/11/2024 618

Câu 4:

Trong một đường tròn, số đo cung lớn bằng

Xem đáp án » 12/11/2024 330

Câu 5:

Cho đường tròn \[\left( {O;R} \right)\] và dây cung \[MN = R\sqrt 3 .\] Kẻ \[OI \bot MN\] tại \[I.\] Số đo cung nhỏ \[MN\] bằng

Xem đáp án » 12/11/2024 301

Câu 6:

Cho hình vẽ bên.

Cho hình vẽ bên.Số đo cung lớn  A B  trong hình ngôi sao năm cánh đã cho bằng (ảnh 1)Cho hình vẽ bên.Số đo cung lớn  A B  trong hình ngôi sao năm cánh đã cho bằng (ảnh 2)

Số đo cung lớn

\[AB\] trong hình ngôi sao năm cánh đã cho bằng

Xem đáp án » 12/11/2024 258
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay