Câu hỏi:

12/11/2024 48

Cho tam giác \[ABC\] cân tại \[A.\] Vẽ đường tròn tâm \[O\] đường kính \[BC.\] Đường tròn \[\left( O \right)\] cắt \[AB,AC\] lần lượt tại \[I,K.\] Biết \[\widehat {BAC} = 40^\circ .\] Số đo của cung nhỏ \(IK\) bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tam giác  A B C  cân tại  A .  Vẽ đường tròn tâm  O  đường kính  B C .  Đường tròn  ( O )  cắt  A B , A C  lần lượt tại  I , K .  Biết  ˆ B A C = 40 ∘ .  Số đo của cung nhỏ  I K  bằng (ảnh 1)

Vì tam giác \[ABC\] cân tại \[A\] nên \[\widehat {ABC} = \widehat {ACB}.\]

Tam giác\[ABC,\] có: \[\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \] (định lí tổng ba góc của một tam giác)

Suy ra \[2\widehat {ACB} = 180^\circ - \widehat {BAC} = 180^\circ - 40^\circ = 140^\circ .\]

Do đó \[\widehat {ACB} = 70^\circ .\] Vì vậy \[\widehat {ABC} = \widehat {ACB} = 70^\circ .\]

Vì tam giác \[OBI\] cân tại \[O\] (do \[OI = OB\]) nên \[\widehat {IBO} = \widehat {BIO} = 70^\circ .\]

Tam giác \[OBI,\] có: \[\widehat {BOI} + \widehat {IBO} + \widehat {BIO} = 180^\circ \] (định lí tổng ba góc của một tam giác)

Suy ra \[\widehat {BOI} = 180^\circ - \left( {\widehat {IBO} + \widehat {BIO}} \right) = 180^\circ - \left( {70^\circ + 70^\circ } \right) = 40^\circ .\]

Thực hiện tương tự, ta thu được \[\widehat {COK} = 40^\circ .\]

Đường tròn \[\left( O \right)\] có \[BC\] là đường kính hay ba điểm \(B,\,\,O,\,\,C\) thằng hàng, đo dó \[\widehat {BOC} = 180^\circ \] nên \[\widehat {BOI} + \widehat {IOK} + \widehat {COK} = 180^\circ \]

Suy ra \[\widehat {IOK} = 180^\circ - \left( {\widehat {BOI} + \widehat {COK}} \right) = 180^\circ - \left( {40^\circ + 40^\circ } \right) = 100^\circ .\]

Vậy

Do đó ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \[\left( {O;R} \right)\] và dây \[AB.\] Trên cung nhỏ \[AB\] lấy hai điểm \[M,\,\,N\] sao cho \[AM = BN\] \[(M\] nằm trên cung nhỏ \[AN).\] Kết luận nào sau đây đúng?

Xem đáp án » 12/11/2024 129

Câu 2:

Trong một trò chơi, hai bạn Thủy và Tiến cùng chạy trên một đường tròn tâm \[O\] có bán kính \[20{\rm{\;m}}\] (hình vẽ).

Trong một trò chơi, hai bạn Thủy và Tiến cùng chạy trên một đường tròn tâm  O  có bán kính  20 m  (hình vẽ). Độ dài dây  A B  nối vị trí của hai bạn đó không thể bằng bao nhiêu mét? (ảnh 1)

Độ dài dây \[AB\] nối vị trí của hai bạn đó không thể bằng bao nhiêu mét?

Xem đáp án » 12/11/2024 79

Câu 3:

Cho hình vẽ bên.

Cho hình vẽ bên.Số đo cung lớn  A B  trong hình ngôi sao năm cánh đã cho bằng (ảnh 1)Cho hình vẽ bên.Số đo cung lớn  A B  trong hình ngôi sao năm cánh đã cho bằng (ảnh 2)

Số đo cung lớn

\[AB\] trong hình ngôi sao năm cánh đã cho bằng

Xem đáp án » 12/11/2024 58

Câu 4:

I. Nhận biết

Cho đường tròn \[\left( O \right)\] đường kính \[AB\] và dây \[CD\] không đi qua tâm. Khẳng định nào sau đây là đúng?

Xem đáp án » 12/11/2024 42

Câu 5:

Cho đường tròn \[\left( {O;R} \right)\] và dây cung \[MN = R\sqrt 3 .\] Kẻ \[OI \bot MN\] tại \[I.\] Số đo cung nhỏ \[MN\] bằng

Xem đáp án » 12/11/2024 40

Câu 6:

III. Vận dụng

Cho đường tròn \[\left( {O;R} \right)\] có hai dây \[AB,CD\] vuông góc với nhau tại \[M.\] Giả sử \[AB = 16{\rm{\;cm}},CD = 12{\rm{\;cm}},MC = 2{\rm{\;cm}}.\] Kẻ \[OH \bot AB\] tại \[H,\] \[OK \bot CD\] tại \[K.\] Khi đó diện tích tứ giác \[OHMK\] bằng

Xem đáp án » 12/11/2024 39

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store