Hình vẽ dưới đây mô tả mặt cắt của một chiếc đèn led có dạng hai hình vành khuyên màu trắng với bán kính các đường tròn lần lượt là \[15{\rm{\;cm}},\,\,18{\rm{\;cm}},\,\,21{\rm{\;cm}},\,\,24{\rm{\;cm}}.\]

Khi đó tổng diện tích hai hình vành khuyên đó bằng
A. \[234\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Quảng cáo
Trả lời:
Đáp án đúng là: A
Diện tích hình vành khuyên màu trắng tạo bởi hai đường tròn đồng tâm có bán kính bằng \[15{\rm{\;cm}},\,\,18{\rm{\;cm}}\] là:
\[{S_1} = \pi \left( {{{18}^2} - {{15}^2}} \right) = 99\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Diện tích hình vành khuyên màu trắng tạo bởi hai đường tròn đồng tâm có bán kính bằng \[21{\rm{\;cm}},\,\,24{\rm{\;cm}}\] là:
\[{S_2} = \pi \left( {{{24}^2} - {{21}^2}} \right) = 135\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Tổng diện tích hai hình vành khuyên đó là:
\[S = {S_1} + {S_2} = 99\pi + 135\pi = 234\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Do đó tổng diện tích hai hình vành khuyên đó bằng \[234\pi {\rm{\;c}}{{\rm{m}}^2}{\rm{.}}\]
Vậy ta chọn phương án A.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[25\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Lời giải
Đáp án đúng là: A

Vì \[OA = OM = 10{\rm{\;(cm)}}\] nên tam giác \[OAM\] cân tại \[O.\]
Mà \[\widehat {BAM} = 45^\circ \], suy ra tam giác \[OAM\] vuông cân tại \[O.\]
Do đó số đo cung nhỏ \[AM\] là:
Diện tích hình quạt \[AOM\] là: \[S = \frac{n}{{360}}\pi {R^2} = \frac{{90}}{{360}}\pi \cdot {10^2} = 25\pi {\rm{\;(c}}{{\rm{m}}^2}).\]
Vậy diện tích hình quạt \[AOM\] bằng \[25\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Do đó ta chọn phương án A.
Câu 2
A. \[\frac{{4\sqrt 2 }}{3}\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Lời giải
Đáp án đúng là: C

Ta có \[OB = OC\] nên tam giác \[OBC\] cân tại \[O.\] Suy ra \[\widehat {OCB} = \widehat {OBC} = 30^\circ .\]
Tam giác \[OBC\] có: \[\widehat {BOC} + \widehat {OCB} + \widehat {OBC} = 180^\circ \] (định lí tổng ba góc của một tam giác)
Suy ra \[\widehat {BOC} = 180^\circ - \left( {\widehat {OCB} + \widehat {OBC}} \right) = 180^\circ - \left( {30^\circ + 30^\circ } \right) = 120^\circ .\]
Do đó
Bán kính đường tròn \[\left( O \right)\] là: \[R = \frac{{AB}}{2} = \frac{{2\sqrt 2 }}{2} = \sqrt 2 {\rm{\;(cm)}}{\rm{.}}\]
Diện tích hình quạt \[BAC\] là: \[{S_q} = \frac{n}{{360}} \cdot \pi {R^2} = \frac{{240}}{{360}} \cdot \pi \cdot {\left( {\sqrt 2 } \right)^2} = \frac{{4\pi }}{3}{\rm{\;(c}}{{\rm{m}}^2}).\]
Vậy diện tích hình quạt \[BAC\] bằng \[\frac{{4\pi }}{3}{\rm{\;c}}{{\rm{m}}^2}.\]
Do đó ta chọn phương án C.
Câu 3
A. \[85^\circ .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\frac{1}{n}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\frac{{4\pi }}{3}{\rm{\;dm}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Hình quạt tròn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.