Câu hỏi:

12/11/2024 965 Lưu

Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\). Biết \(OI = 7{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn ở ngoài nhau là

A. \(1{\rm{\;cm}}{\rm{.}}\)

B. \(2{\rm{\;cm}}.\)
C. \(6{\rm{\;cm}}.\)
D. \({\rm{12\;cm}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Để hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) ở ngoài nhau thì \(OI > 5 + R\)

Hay \(7 > 5 + R\) suy ra \(R < 2{\rm{\;cm}}.\)

Trong các phương án trên, ta thấy chỉ có giá trị \(R = 1{\rm{\;cm}}\) thỏa mãn điều kiện trên.

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Để hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) tiếp xúc trong thì \(OI = 5 - R > 0\)

Suy ra \[R = 5 - OI = 5 - 3 = 2{\rm{\;(cm)}}{\rm{.}}\]

Lời giải

Đáp án đúng là: B

Cho nửa đường tròn  ( O ; R ) ,  đường kính  A B .  Vẽ nửa đường tròn tâm  O ′ ,  đường kính  A O  (cùng phía với nửa đường tròn  ( O ) ). Một đường thẳng bất kì qua  A  cắt  ( O ) , ( O ′ )  lần lượt tại  C , D .  Nếu  B C  là tiếp tuyến của nửa đường tròn  ( O ′ )  thì (ảnh 1)

Vì đường tròn tâm \(O'\) có \[AO\] là đường kính nên \(O'C = O'O = \frac{{AO}}{2} = \frac{R}{2}.\)

Ta có \[OB = R\] và \[O'B = OO' + OB = \frac{R}{2} + R = \frac{{3R}}{2}.\]

Vì \[BC\] là tiếp tuyến của nửa đường tròn \[\left( {O'} \right)\] nên \[O'C \bot BC\] tại \[C.\]

Áp dụng định lí Pythagore cho tam giác \[O'BC\] vuông tại \[C,\] ta được \[O'{B^2} = O'{C^2} + B{C^2}.\]

Suy ra \[B{C^2} = O'{B^2} - O'{C^2} = {\left( {\frac{{3R}}{2}} \right)^2} - {\left( {\frac{R}{2}} \right)^2} = 2{R^2}.\]

Do đó \[BC = R\sqrt 2 .\]

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] ở ngoài nhau.

B. đường tròn \[\left( {O;R} \right)\] đựng \[\left( {O';r} \right).\]

C. đường tròn \[\left( {O';r} \right)\] và \[\left( {O;R} \right).\]

D. hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] cắt nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP