Cho đường tròn \[\left( O \right)\] và \[\left( {O'} \right)\] tiếp xúc ngoài tại \[A.\] Kẻ đường kính \[AB\] của đường tròn \[\left( O \right)\] và đường kính \[AC\] của đường tròn \[\left( {O'} \right).\] Gọi \[DE\] là tiếp tuyến của cả hai đường tròn \[\left( O \right)\] và \[\left( {O'} \right)\] với hai tiếp điểm \[D \in \left( O \right)\] và \[E \in \left( {O'} \right)\] \((DE\) không cắt đoạn \(O'O).\) Gọi \[M\] là giao điểm của \[BD\] và \[CE.\] Biết rằng \[\widehat {DOA} = 60^\circ \] và \[OA = 6{\rm{\;cm}}.\] Diện tích tứ giác \[ADME\] bằng
A. \[12{\rm{\;c}}{{\rm{m}}^2}.\]
Quảng cáo
Trả lời:

Đáp án đúng là: C
Vì \[OA = OD\] nên tam giác \[OAD\] cân tại \[O.\] Do đó \[\widehat {{A_2}} = \widehat {ODA}.\]
Chứng minh tương tự, ta được \[\widehat {{A_1}} = \widehat {O'EA}.\]
Ta có \[DE\] là tiếp tuyến của cả hai đường tròn \[\left( O \right)\] và \[\left( {O'} \right)\] với hai tiếp điểm \[D \in \left( O \right)\] và \[E \in \left( {O'} \right)\] nên \[O'E \bot DE\] và \[OD \bot DE.\]
Xét tứ giác \(O'EDO\) ta có: \[\widehat {{{O'}_1}} + \widehat {{O_1}} = 360^\circ - \widehat {O'ED} - \widehat {ODE} = 360^\circ - 90^\circ - 90^\circ = 180^\circ \]
Suy ra \[\left( {180^\circ - \widehat {{A_1}} - \widehat {O'EA}} \right) + \left( {180^\circ - \widehat {{A_2}} - \widehat {ODA}} \right) = 180^\circ \]
Khi đó \[2 \cdot \widehat {{A_1}} + 2 \cdot \widehat {{A_2}} = 180^\circ \]
Vì vậy \[2 \cdot \left( {\widehat {{A_1}} + \widehat {{A_2}}} \right) = 180^\circ \]
Suy ra \[\widehat {{A_1}} + \widehat {{A_2}} = 90^\circ \]
Ta có \[\widehat {{A_1}} + \widehat {{A_2}} + \widehat {EAD} = 180^\circ \]
Suy ra \[\widehat {EAD} = 180^\circ - \left( {\widehat {{A_1}} + \widehat {{A_2}}} \right) = 180^\circ - 90^\circ = 90^\circ .\]
Tam giác \[CEA\] có \[EO'\] là đường trung tuyến và \[EO' = \frac{{AC}}{2}\] nên tam giác \[CEA\] vuông tại \[E.\]
Chứng minh tương tự, ta được tam giác \[ABD\] vuông tại \[D.\]
Tứ giác \[ADME\] có: \[\widehat {DAE} = \widehat {AEM} = \widehat {ADM} = 90^\circ \] nên tứ giác \[ADME\] là hình chữ nhật.
Tam giác \[OAD\] cân tại \[O\] có \[\widehat {DOA} = 60^\circ \] nên tam giác \[OAD\] là tam giác đều.
Khi đó \[AD = OD = OA = 6{\rm{\;cm}}\] và \[\widehat {ADO} = 60^\circ .\]
Vì \[\widehat {ODE} = 90^\circ \] nên \[\widehat {ODA} + \widehat {ADE} = 90^\circ \]
Suy ra \[\widehat {ADE} = 90^\circ - \widehat {ODA} = 90^\circ - 60^\circ = 30^\circ .\]
Vì tam giác \[DAE\] vuông tại \[A\] nên \[AE = AD \cdot \tan \widehat {ADE} = 6 \cdot \tan 30^\circ = 2\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\]
Do đó diện tích tứ giác \[ADME\] là: \[S = AE \cdot AD = 2\sqrt 3 \cdot 6 = 12\sqrt 3 {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Vậy ta chọn phương án C.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. tam giác tù.
Lời giải
Đáp án đúng là: C
Vì \[{O_1}A = {O_1}B\] nên tam giác \[{O_1}AB\] cân tại \[{O_1}.\] Do đó \[\widehat {{O_1}AB} = \widehat {{O_1}BA}.\]
Chứng minh tương tự, ta được \[\widehat {{O_2}AC} = \widehat {{O_2}CA}.\]
Ta có đường thẳng \[\left( d \right)\] tiếp xúc với \[\left( {{O_1}} \right),\left( {{O_2}} \right)\] lần lượt tại \[B,C\] nên \[{O_1}B \bot BC\] tại \[B\] và \({O_2}C \bot BC\) tại \(C.\)
Xét tứ giác \({O_1}BC{O_2}\) ta có: \[\widehat {{O_1}} + \widehat {{O_2}} = 360^\circ - \widehat {B\,} - \widehat {C\,} = 360^\circ - 90^\circ - 90^\circ = 180^\circ \]
Suy ra \[\left( {180^\circ - \widehat {{O_1}AB} - \widehat {{O_1}BA}} \right) + \left( {180^\circ - \widehat {{O_2}AC} - \widehat {{O_2}CA}} \right) = 180^\circ \]
Khi đó \[2 \cdot \widehat {{O_1}AB} + 2 \cdot \widehat {{O_2}AC} = 180^\circ \]
Vì vậy \[2 \cdot \left( {\widehat {{O_1}AB} + \widehat {{O_2}AC}} \right) = 180^\circ \]
Suy ra \[\widehat {{O_1}AB} + \widehat {{O_2}AC} = 90^\circ \]
Ta có \[\widehat {{O_1}AB} + \widehat {BAC} + \widehat {{O_2}AC} = 180^\circ \]
Suy ra \[\widehat {BAC} = 180^\circ - \left( {\widehat {{O_1}AB} + \widehat {{O_2}AC}} \right) = 180^\circ - 90^\circ = 90^\circ .\]
Vậy tam giác \[ABC\] vuông tại \[A.\]
Do đó ta chọn phương án C.
Câu 2
A. \[BC = 2R.\]
Lời giải
Đáp án đúng là: B
Vì đường tròn tâm \(O'\) có \[AO\] là đường kính nên \(O'C = O'O = \frac{{AO}}{2} = \frac{R}{2}.\)
Ta có \[OB = R\] và \[O'B = OO' + OB = \frac{R}{2} + R = \frac{{3R}}{2}.\]
Vì \[BC\] là tiếp tuyến của nửa đường tròn \[\left( {O'} \right)\] nên \[O'C \bot BC\] tại \[C.\]
Áp dụng định lí Pythagore cho tam giác \[O'BC\] vuông tại \[C,\] ta được \[O'{B^2} = O'{C^2} + B{C^2}.\]
Suy ra \[B{C^2} = O'{B^2} - O'{C^2} = {\left( {\frac{{3R}}{2}} \right)^2} - {\left( {\frac{R}{2}} \right)^2} = 2{R^2}.\]
Do đó \[BC = R\sqrt 2 .\]
Vậy ta chọn phương án B.
Câu 3
A. \(1{\rm{\;cm}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\Delta ABC = \Delta DBC.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(1{\rm{\;cm}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] ở ngoài nhau.
B. đường tròn \[\left( {O;R} \right)\] đựng \[\left( {O';r} \right).\]
C. đường tròn \[\left( {O';r} \right)\] và \[\left( {O;R} \right).\]
D. hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] cắt nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.