Câu hỏi:
13/11/2024 111Cho tam giác \[ABC\] vuông tại \[A,\] cạnh \[AB = 5{\rm{\;cm}},\,\,\widehat {B\,} = 60^\circ .\] Đường tròn tâm \[I,\] đường kính \[AB\] cắt \[BC\] ở \[D.\] Khẳng định nào sau đây là sai?
Quảng cáo
Trả lời:
Đáp án đúng là: A
Vì \[IB = ID\] (cùng bằng bán kính của đường tròn \[\left( I \right)\] đường kính \[AB\]) nên tam giác \[IBD\] cân tại \[I.\]
Mà \[\widehat {IBD} = 60^\circ ,\] do đó tam giác \[IBD\] đều.
Suy ra \[\widehat {BID} = 60^\circ \] nên
Bán kính đường tròn \[\left( I \right)\] là: \[R = \frac{{AB}}{2} = \frac{5}{2}{\rm{\;(cm)}}{\rm{.}}\]
Độ dài cung nhỏ \[BD\] của đường tròn \[\left( I \right)\] là: \[l = \frac{n}{{180}}\pi R = \frac{{60}}{{180}}\pi \cdot \frac{5}{2} = \frac{{5\pi }}{6}{\rm{\;(cm)}}{\rm{.}}\]
Vì vậy phương án A sai, phương án D đúng.
Vậy ta chọn phương án A.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Hình quạt tròn là phần hình tròn giới hạn bởi một cung tròn và hai bán kính đi qua hai đầu mút của cung tròn đó.
Vậy ta chọn phương án A.
Lời giải
Đáp án đúng là: B
Bán kính của hai đường tròn đồng tâm lần lượt là \[R = \frac{8}{2} = 4{\rm{\;(cm)}}\] và \[r = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\]
Diện tích hình vành khuyên cần tìm là: \[{S_v} = \pi \left( {{R^2} - {r^2}} \right) = \pi \left( {{4^2} - {3^2}} \right) = 7\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Do đó diện tích hình vành khuyên cần tìm là \[7\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Vậy ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.