15 câu trắc nghiệm Toán 9 Cánh diều Bài tập cuối chương V có đáp án

41 người thi tuần này 4.6 223 lượt thi 15 câu hỏi 60 phút

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

I. Nhận biết

Cho đường tròn \[\left( {O;\,2{\rm{\;cm}}} \right)\] và một điểm \[H\] bất kì. Nếu \[OH < 2{\rm{\;cm}}\] thì

Lời giải

Đáp án đúng là: C

Do \[OH < 2{\rm{\;cm}}\] nên điểm \[H\] nằm trong đường tròn \[\left( {O\,;\,2{\rm{\;cm}}} \right).\]

Vậy ta chọn phương án C.

Câu 2

“Trong các dây của một đường tròn, đường kính là dây có độ dài …”. Cụm từ thích hợp điền vào chỗ trống là

Lời giải

Đáp án đúng là: A

Ta có trong một đường tròn, đường kính là dây cung lớn nhất.

Vì vậy ta điền như sau: “Trong các dây của một đường tròn, đường kính là dây có độ dài lớn nhất”.

Vậy ta chọn phương án A.

Câu 3

Cho hai đường tròn đồng tâm \[\left( {O;2{\rm{\;cm}}} \right)\] và \[\left( {O;3{\rm{\;cm}}} \right).\]

vDiện tích hình vành khuyên được giới hạn bởi hai đường tròn đó là (ảnh 1)

Diện tích hình vành khuyên được giới hạn bởi hai đường tròn đó là

Lời giải

Đáp án đúng là: A

Diện tích hình vành khuyên giới hạn bởi hai đường tròn đồng tâm \[\left( {O;2{\rm{\;cm}}} \right)\] và \[\left( {O;3{\rm{\;cm}}} \right)\] là:

\[{S_v} = \pi \left( {{R^2} - {r^2}} \right) = \pi \left( {{3^2} - {2^2}} \right) = 5\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Vậy ta chọn phương án A.

Câu 4

Nếu đường thẳng \[d\] là tiếp tuyến của đường tròn \[\left( O \right)\] tại \[A\] thì

Lời giải

Đáp án đúng là: D

Nếu đường thẳng  d  là tiếp tuyến của đường tròn  ( O )  tại  A  thì (ảnh 1)

Ta có đường thẳng \[d\] là tiếp tuyến của đường tròn \[\left( O \right)\] tại \[A\] nên \[d \bot OA\] tại \[A,\] với \[A\] là tiếp điểm.

Vậy ta chọn phương án D.

Lời giải

Đáp án đúng là: A

Cho đường tròn  ( O ; O A )  và đường tròn  ( O ′ )  đường kính  O A .  Vị trí tương đối của hai đường tròn ( O )  và  ( O ′ )  là (ảnh 1)

Vì đường tròn \[\left( {O'} \right)\] có đường kính \[OA\] nên \[O'\] là trung điểm \[OA.\]

Do đó \[OO' = O'A = \frac{{OA}}{2}.\]

Đặt \[R = OA\] và \[R' = O'A = \frac{{OA}}{2}.\] Suy ra \[R > R'.\]

Ta có \[OA - \frac{{OA}}{2} = \frac{{OA}}{2}.\] Suy ra \[R - R' = OO',\] với \[R > R'.\]

Khi đó hai đường tròn \[\left( {O;OA} \right)\] và \[\left( {O';\frac{{OA}}{2}} \right)\] tiếp xúc trong.

Vậy ta chọn phương án A.

Câu 6

II. Thông hiểu

Hai tiếp tuyến tại \(B\) và \(C\) của đường tròn \((O)\) cắt nhau tại \(A\). Khẳng định nào sau đây là sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

45 Đánh giá

50%

40%

0%

0%

0%