Câu hỏi:
13/11/2024 47Cho hình vuông \(ABCD\) cạnh bằng \(2{\rm{\;cm}}.\) Gọi \(I,\,\,J\) lần lượt là trung điểm của \(AC,\,\,CD.\) Vị trí tương đối của đường tròn \(\left( {A;\,AI} \right)\) và \(\left( {C;\,CJ} \right)\) là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Vì \(ABCD\) là hình vuông nên \(AB = BC = CD = DA = 2{\rm{\;cm}}.\)
Áp dụng định lí Pythagore cho \(\Delta ABC\) vuông tại \(B\) có:
\(A{C^2} = A{B^2} + B{C^2} = {2^2} + {2^2} = 8.\) Suy ra \(AC = 2\sqrt 2 {\rm{\;cm}}{\rm{.}}\)
Vì \(I,\,\,J\) lần lượt là trung điểm của \(AC,\,\,CD\) nên ta có:
⦁ \(AI = \frac{{AC}}{2} = \sqrt 2 {\rm{\;cm;}}\)
⦁ \(CJ = \frac{{CD}}{2} = 1{\rm{\;cm}}.\)
Ta có: \(AI + CJ = \sqrt 2 + 1{\rm{\;(cm)}}\) và \(AC = 2\sqrt 2 {\rm{\;cm}}{\rm{.}}\)
Suy ra \(AI + CJ < AC\) (do \(1 + \sqrt 2 < 2\sqrt 2 )\) nên hai đường tròn ở ngoài nhau.
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn \[\left( {O;R} \right)\] và dây \[AB = R.\] Trên tia đối của tia \[BA\] lấy điểm \[C\] sao cho \[BC = BA.\] Kéo dài \[CO\] cắt đường tròn \[\left( O \right)\] lần lượt tại \[D,E\] (\[D\] nằm giữa \[C,O\]). Kết luận nào sau đây là sai?
Câu 2:
Cho đường tròn tâm \(O\) và điểm \(A\) nằm ngoài đường tròn. Từ \(A\) kẻ hai tiếp tiếp tuyến \(AB\) và \(AC\) của đường tròn tâm \(O\) (điểm \(B,C\) là tiếp điểm). Nếu \(\widehat {BAC} = 90^\circ \) thì tam giác \(ABO\) là
Câu 3:
Cho đường tròn \[\left( O \right)\] bán kính \[OA.\] Từ trung điểm \[M\] của \[OA\] vẽ dây \[BC \bot OA.\] Biết độ dài đường tròn \[\left( O \right)\] là \[4\pi {\rm{\;cm}}.\] Độ dài cung lớn \[BC\] là
Câu 4:
Cho đường tròn \[\left( {O;R} \right).\] Từ một điểm \[M\] nằm ngoài đường tròn kẻ các tiếp tuyến \[ME,MF\] đến đường tròn (với \[E,F\] là các tiếp điểm). Đoạn \[OM\] cắt đường tròn \[\left( O \right)\] tại \[I.\] Kẻ đường kính \[ED\] của đường tròn \[\left( O \right).\] Hạ \[FK\] vuông góc với \[ED.\] Gọi \[P\] là giao điểm của \[MD\] và \[FK.\] Cho \[FK = 6{\rm{\;cm}}\] và các khẳng định sau:
(i) Các điểm \[M,E,O,F\] cùng thuộc một đường tròn.
(ii) \[FP = PK = 3{\rm{\;cm}}.\]
Câu 5:
Cho hai đường tròn đồng tâm \[\left( {O;2{\rm{\;cm}}} \right)\] và \[\left( {O;3{\rm{\;cm}}} \right).\]
Diện tích hình vành khuyên được giới hạn bởi hai đường tròn đó là
Câu 6:
Nếu đường thẳng \[d\] là tiếp tuyến của đường tròn \[\left( O \right)\] tại \[A\] thì
về câu hỏi!