Câu hỏi:
13/11/2024 187Cho đường tròn tâm \(O\) và điểm \(A\) nằm ngoài đường tròn. Từ \(A\) kẻ hai tiếp tiếp tuyến \(AB\) và \(AC\) của đường tròn tâm \(O\) (điểm \(B,C\) là tiếp điểm). Nếu \(\widehat {BAC} = 90^\circ \) thì tam giác \(ABO\) là
Quảng cáo
Trả lời:
Đáp án đúng là: C
Vì \(AB\) và \(AC\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) cắt nhau tại \(A\) nên \(AO\) là tia phân giác của \(\widehat {BAC}.\) Do đó \[\widehat {BAO} = \frac{1}{2}\widehat {BAC} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\]
Do \(AB\) là tiếp tuyến của đường tròn \(\left( O \right)\) tại \(B\) nên \(AB \bot OB\).
Khi đó \(\Delta ABO\) vuông tại \(B\) có \[\widehat {BAO} = 45^\circ \] nên là tam giác vuông cân tại \(B\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
⦁ Xét \[\Delta OAB\] có \[OA = OB = AB = R\] nên \[\Delta OAB\] là tam giác đều.
Khi đó \[\widehat {AOB} = \widehat {OAB} = 60^\circ .\]
Theo bài, điểm \[C\] nằm trên tia đối của tia \[BA\] sao cho \[BC = BA\] nên \[B\] là trung điểm \[AC.\]
Tam giác \[OAC\] có \[OB\] là đường trung tuyến ứng với \(AC\) và \[R = OB = BA = BC = \frac{{AC}}{2}\] nên tam giác \[OAC\] vuông tại \[O.\]
Do đó \[\widehat {AOC} = 90^\circ \] (1)
⦁ Tam giác \[OAC\] vuông tại \[O,\] có: \[\widehat {OAC} + \widehat {OCA} = 90^\circ .\]
Suy ra \[\widehat {OCA} = 90^\circ - \widehat {OAC} = 90^\circ - 60^\circ = 30^\circ \] (2)
Do đó phương án D là kết luận đúng.
⦁ Từ (1), (2), ta thu được \[\widehat {AOD} = 3\widehat {ACD}.\] Do đó phương án A là kết luận đúng.
⦁ Từ (1), ta suy ra \[OA \bot OE\] hay \[\widehat {AOE} = 90^\circ .\]
Do đó phương án B là kết luận sai.
Vậy ta chọn phương án B.
Lời giải
Đáp án đúng là: C
⦁ Ta có \[ME\] là tiếp tuyến của đường tròn \[\left( O \right)\] nên \[ME \bot OE\] tại \[E.\]
Do đó tam giác \[OEM\] vuông tại \[E.\]
Gọi \[J\] là trung điểm \[OM.\]
Tam giác \[OEM\] vuông tại \[E\] có \[EJ\] là đường trung tuyến ứng với cạnh huyền \(OM\)
Suy ra \[EJ = JO = JM = \frac{{OM}}{2}.\]
Do đó ba điểm \[M,E,O\] cùng thuộc đường tròn tâm \[J,\] đường kính \(OM\).
Chứng minh tương tự, ta được ba điểm \(M,\,\,F,\,\,O\) cùng thuộc đường tròn tâm \(J,\) đường kính \(OM.\)
Vì vậy các điểm \(M,\,\,E,\,\,O,\,\,F\) cùng thuộc đường tròn tâm \(J\) đường kính \(OM.\)
Do đó khẳng định (i) là đúng.
⦁ Gọi \(G\) là giao điểm của \(EM\) và \(FD\).
Tam giác \(OEF\) cân tại \(O\) (do \(OE = OF = R)\) có \(OM\) là đường phân giác (theo tính chất hai tiếp tuyến cắt nhau) nên \(OM\) cũng là đường cao của tam giác \(OEF\), do đó \(OM \bot EF\).
Tam giác \(FED\) có \(FO\) là đường trung tuyến ứng với cạnh \(ED\) và \(FO = \frac{{ED}}{2}\) nên tam giác \(FED\) vuông tại \(F\). Do đó \(EF \bot FD\).
Suy ra \(FD\,{\rm{//}}\,OM\) hay \(DG\,{\rm{//}}\,OM\).
Tam giác \(EDG\) có \(O\) là trung điểm \(ED\) và \(DG\,{\rm{//}}\,OM\) nên \(OM\) là đường trung bình của tam giác \(EDG\). Khi đó \(M\) là trung điểm \(EG\) nên \(ME = MG\).
Vì \(PK\,{\rm{//}}\,ME\) (do cùng vuông góc với \(ED)\) nên áp dụng định lí Thalès, ta được \(\frac{{PK}}{{ME}} = \frac{{DP}}{{DM}}\) (1)
Chứng minh tương tự, ta được \(\frac{{PF}}{{MG}} = \frac{{DP}}{{DM}}\) (2)
Từ (1), (2), ta suy ra \(\frac{{PF}}{{MG}} = \frac{{PK}}{{ME}}.\)
Mà \(ME = MG\) nên \(PF = PK\) hay \(P\) là trung điểm của \(FK.\)
Vì vậy \(PF = PK = \frac{{FK}}{2} = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\) Do đó khẳng định (ii) là đúng.
Vậy ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.