Câu hỏi:
13/11/2024 17Một họa tiết trang trí có dạng hình tròn bán kính \[5{\rm{\;dm}}\] được chia thành nhiều hình quạt tròn (hình vẽ), mỗi hình quạt tròn có góc ở tâm là \[7,5^\circ .\]
Diện tích tất cả các hình quạt tròn được tô màu ở hình vẽ trên là bao nhiêu đề-xi-mét vuông (làm tròn kết quả đến hàng phần trăm)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Vì mỗi hình quạt tròn có góc ở tâm là \[7,5^\circ \] nên mỗi hình quạt tròn đó ứng với cung \[7,5^\circ .\]
Diện tích mỗi hình quạt tròn là: \[{S_q} = \frac{n}{{360}}\pi {R^2} = \frac{{7,5}}{{360}} \cdot \pi \cdot {5^2} = \frac{{25\pi }}{{48}}{\rm{\;(d}}{{\rm{m}}^2}).\]
Vì \[\frac{{360}}{{7,5}} = 48\] và các hình quạt tròn được tô màu và không được tô màu được sắp xếp xen kẽ nhau nên số hình quạt tròn được tô màu là: \[48:2 = 24\] (hình quạt tròn).
Diện tích tất cả các hình quạt tròn được tô màu là: \[S = 24{S_q} = 24 \cdot \frac{{25\pi }}{{48}} = \frac{{25\pi }}{2}{\rm{\;(d}}{{\rm{m}}^2}).\]
Vậy ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn \[\left( {O;R} \right)\] và dây \[AB = R.\] Trên tia đối của tia \[BA\] lấy điểm \[C\] sao cho \[BC = BA.\] Kéo dài \[CO\] cắt đường tròn \[\left( O \right)\] lần lượt tại \[D,E\] (\[D\] nằm giữa \[C,O\]). Kết luận nào sau đây là sai?
Câu 2:
Cho đường tròn tâm \(O\) và điểm \(A\) nằm ngoài đường tròn. Từ \(A\) kẻ hai tiếp tiếp tuyến \(AB\) và \(AC\) của đường tròn tâm \(O\) (điểm \(B,C\) là tiếp điểm). Nếu \(\widehat {BAC} = 90^\circ \) thì tam giác \(ABO\) là
Câu 3:
Cho hình vuông \(ABCD\) cạnh bằng \(2{\rm{\;cm}}.\) Gọi \(I,\,\,J\) lần lượt là trung điểm của \(AC,\,\,CD.\) Vị trí tương đối của đường tròn \(\left( {A;\,AI} \right)\) và \(\left( {C;\,CJ} \right)\) là
Câu 4:
Cho đường tròn \[\left( O \right)\] bán kính \[OA.\] Từ trung điểm \[M\] của \[OA\] vẽ dây \[BC \bot OA.\] Biết độ dài đường tròn \[\left( O \right)\] là \[4\pi {\rm{\;cm}}.\] Độ dài cung lớn \[BC\] là
Câu 5:
Cho đường tròn \[\left( {O;R} \right).\] Từ một điểm \[M\] nằm ngoài đường tròn kẻ các tiếp tuyến \[ME,MF\] đến đường tròn (với \[E,F\] là các tiếp điểm). Đoạn \[OM\] cắt đường tròn \[\left( O \right)\] tại \[I.\] Kẻ đường kính \[ED\] của đường tròn \[\left( O \right).\] Hạ \[FK\] vuông góc với \[ED.\] Gọi \[P\] là giao điểm của \[MD\] và \[FK.\] Cho \[FK = 6{\rm{\;cm}}\] và các khẳng định sau:
(i) Các điểm \[M,E,O,F\] cùng thuộc một đường tròn.
(ii) \[FP = PK = 3{\rm{\;cm}}.\]
Câu 6:
Cho hai đường tròn đồng tâm \[\left( {O;2{\rm{\;cm}}} \right)\] và \[\left( {O;3{\rm{\;cm}}} \right).\]
Diện tích hình vành khuyên được giới hạn bởi hai đường tròn đó là
Câu 7:
Nếu đường thẳng \[d\] là tiếp tuyến của đường tròn \[\left( O \right)\] tại \[A\] thì
về câu hỏi!