Câu hỏi:
13/11/2024 33Cho đường tròn \[\left( O \right)\] đường kính \[AB = 2\sqrt 2 {\rm{\;cm}}.\] Điểm \[C \in \left( O \right)\] sao cho \[\widehat {ABC} = 30^\circ .\] Diện tích hình quạt \[BAC\] bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có \[OB = OC\] nên tam giác \[OBC\] cân tại \[O.\] Suy ra \[\widehat {OCB} = \widehat {OBC} = 30^\circ .\]
Tam giác \[OBC\] có: \[\widehat {BOC} + \widehat {OCB} + \widehat {OBC} = 180^\circ \] (định lí tổng ba góc của một tam giác)
Suy ra \[\widehat {BOC} = 180^\circ - \left( {\widehat {OCB} + \widehat {OBC}} \right) = 180^\circ - \left( {30^\circ + 30^\circ } \right) = 120^\circ .\]
Do đó
Bán kính đường tròn \[\left( O \right)\] là: \[R = \frac{{AB}}{2} = \frac{{2\sqrt 2 }}{2} = \sqrt 2 {\rm{\;(cm)}}{\rm{.}}\]
Diện tích hình quạt \[BAC\] là: \[{S_q} = \frac{n}{{360}} \cdot \pi {R^2} = \frac{{240}}{{360}} \cdot \pi \cdot {\left( {\sqrt 2 } \right)^2} = \frac{{4\pi }}{3}{\rm{\;(c}}{{\rm{m}}^2}).\]
Vậy diện tích hình quạt \[BAC\] bằng \[\frac{{4\pi }}{3}{\rm{\;c}}{{\rm{m}}^2}.\]
Do đó ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình “viên phân” (phần màu xanh) được giới hạn bởi dây cung có độ dài \[55{\rm{\;cm}}\] và cung có số đo \[95^\circ \] (hình vẽ).
Diện tích hình viên phân đó (làm tròn kết quả đến hàng phần trăm) là
Câu 2:
Cho tam giác \[ABC\] đều có ba đỉnh nằm trên đường tròn \[\left( O \right).\] Độ dài các cung \[AB,BC,CA\] đều bằng \[6\pi {\rm{\;cm}}.\] Diện tích của đường tròn \[\left( O \right)\] là
Câu 3:
Cho tam giác \[ABC\] vuông tại \[A,\] cạnh \[AB = 5{\rm{\;cm}},\,\,\widehat {B\,} = 60^\circ .\] Đường tròn tâm \[I,\] đường kính \[AB\] cắt \[BC\] ở \[D.\] Khẳng định nào sau đây là sai?
Câu 4:
Công thức tính diện tích hình vành khuyên tạo bởi hai đường tròn đồng tâm có bán kính \[R\] và \[r\] (với \[R > r)\] là
Câu 5:
Diện tích hình vành khuyên nằm giữa hai đường tròn đồng tâm có đường kính lần lượt là \[8{\rm{\;cm}}\] và \[6{\rm{\;cm}}\] bằng
Câu 6:
Tỉ số giữa độ dài cung \[n^\circ \] và chu vi đường tròn (cùng bán kính) luôn bằng
về câu hỏi!