Câu hỏi:

13/11/2024 197 Lưu

Cho hình “viên phân” (phần màu xanh) được giới hạn bởi dây cung có độ dài \[55{\rm{\;cm}}\] và cung có số đo \[95^\circ \] (hình vẽ).

Cho hình “viên phân” (phần màu xanh) được giới hạn bởi dây cung có độ dài  55 c m  và cung có số đo  95 ∘  (hình vẽ).Diện tích hình viên phân đó (làm tròn kết quả đến hàng phầ (ảnh 1)

Diện tích hình viên phân đó (làm tròn kết quả đến hàng phần trăm)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho hình “viên phân” (phần màu xanh) được giới hạn bởi dây cung có độ dài  55 c m  và cung có số đo  95 ∘  (hình vẽ).Diện tích hình viên phân đó (làm tròn kết quả đến hàng phầ (ảnh 2)

Kẻ \[OH \bot AB\] tại \[H.\]

Tam giác \[OAB\] cân tại \[O\] (do \[OA = OB = R\]) có \[OH\] là đường cao, suy ra \[OH\] cũng là đường trung tuyến của tam giác. Do đó \[H\] là trung điểm \[AB.\]

Vì vậy \[HB = \frac{{AB}}{2} = \frac{{55}}{2} = {\rm{27,5\;(cm)}}{\rm{.}}\]

Tam giác \[OAB\] cân tại \[O\] có \[OH\] là đường cao, suy ra \[OH\] cũng là đường phân giác của tam giác.

Do đó \[\widehat {BOH} = \frac{{\widehat {AOB}}}{2} = \frac{{95^\circ }}{2} = 47,5^\circ .\]

Vì tam giác \[OBH\] vuông tại \[H\] nên:

⦁ \[\sin \widehat {BOH} = \frac{{HB}}{{OB}},\] suy ra \[OB = \frac{{HB}}{{\sin \widehat {BOH}}} = \frac{{27,5}}{{\sin 47,5^\circ }}{\rm{\;(cm);}}\]

⦁ \[\tan \widehat {BOH} = \frac{{HB}}{{OH}},\] suy ra \[OH = \frac{{HB}}{{\tan \widehat {BOH}}} = \frac{{27,5}}{{\tan 47,5^\circ }}{\rm{\;(cm)}}{\rm{.}}\]

Diện tích tam giác \[OAB\] là:

\[{S_{\Delta OAB}} = \frac{1}{2} \cdot OH \cdot AB = \frac{1}{2} \cdot \frac{{27,5}}{{\tan 47,5^\circ }} \cdot 55 = \frac{{3025}}{{4 \cdot \tan 47,5^\circ }} \approx 692,98{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Diện tích hình quạt tròn \[AOB\] là:

\[{S_{hqAOB}} = \frac{n}{{360}} \cdot \pi {R^2} = \frac{{95}}{{360}} \cdot \pi \cdot O{B^2} = \frac{{19}}{{72}} \cdot \pi \cdot {\left( {\frac{{27,5}}{{\sin 47,5^\circ }}} \right)^2} \approx 1\,\,153,39{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Khi đó, diện tích hình viên phân cần tìm là:

\[S = {S_{hqAOB}} - {S_{\Delta OAB}} \approx 1\,\,153,39 - 692,98 = 460,41{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Hình quạt tròn là phần hình tròn giới hạn bởi một cung tròn và hai bán kính đi qua hai đầu mút của cung tròn đó.

Vậy ta chọn phương án A.

Câu 2

Lời giải

Đáp án đúng là: D

Cho tam giác  A B C  đều có ba đỉnh nằm trên đường tròn  ( O ) .  Độ dài các cung  A B , B C , C A  đều bằng  6 π c m .  Diện tích của đường tròn  ( O )  là (ảnh 1)

Chu vi đường tròn \(\left( O \right)\) hay chính là độ dài đường tròn \[\left( O \right),\] và bằng \[6\pi + 6\pi + 6\pi = 18\pi .\]

Suy ra \[2\pi R = 18\pi \] hay \[R = 9{\rm{\;(cm)}}{\rm{.}}\]

Diện tích của đường tròn \[\left( O \right)\] là: \[S = \pi {R^2} = \pi \cdot {9^2} = 27\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Vậy ta chọn phương án D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP