Câu hỏi:

13/11/2024 976

III. Vận dụng

Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho lục giác đều  A B C D E F  tâm  O .  Gọi  M , N  lần lượt là trung điểm của  E F , B D .  Khẳng định nào sau đây là sai? (ảnh 1)

Xét phương án A:

Tổng 6 góc của lục giác đều \[ABCDEF\]bằng tổng các góc trong hai tứ giác \[ABCD\] và \[AFED.\]

Suy ra tổng 6 góc của lục giác đều \[ABCDEF\] bằng \[2 \cdot 360^\circ = 720^\circ .\]

Do tất cả các góc của lục giác đều bằng nhau nên số đo mỗi góc của lục giác đều bằng \[\frac{{720^\circ }}{6} = 120^\circ \] hay \[\widehat {AFM} = \widehat {BCD} = 120^\circ .\]

Vì \[CB = CD\] (chứng minh trên) nên tam giác \[BCD\] cân tại \[C.\]

Do đó \[CO\] vừa là đường trung tuyến, vừa là đường phân giác của tam giác \[BCD\].

Vì vậy \[\widehat {OCB} = \frac{{\widehat {BCD}}}{2} = \frac{{120^\circ }}{2} = 60^\circ .\]

Ta có \[OB = OC\] (vì \[O\] là tâm của lục giác đều \[ABCDEF\]).

Suy ra tam giác \[OBC\] cân tại \[O\].

Mà \[\widehat {OCB} = 60^\circ \] (chứng minh trên). Do đó tam giác \[OBC\] đều.

Chứng minh tương tự cho các tam giác \[OCD,{\rm{ }}OAB,{\rm{ }}OAF,\,\,ODE,\,\,OEF,\] ta được \[\Delta OCD,{\rm{ }}\Delta OAB,\] \[\Delta OAF,{\rm{ }}\Delta ODE,\,\,\Delta OEF\] là các tam giác đều.

Ta có tam giác \[OBC\] đều nên \[OB = BC = OC,\] mà \[OB = OC = OD\] và \[BC = CD\] nên \[OB = BC = CD = OD.\] Suy ra tứ giác \[OBCD\] là hình thoi.

Do đó hai đường chéo \[OC\] và \[BD\] vuông góc với nhau tại trung điểm \[N\] của mỗi đường.

Vậy N là trung điểm \[OC.\]

Xét phương án B:

Ta có \[\widehat {AOB} = \widehat {BOC} = 60^\circ \] (vì các tam giác \[OAB,{\rm{ }}OBC\] đều).

Suy ra \[\widehat {AOC} = \widehat {AOB} + \widehat {BOC} = 60^\circ + 60^\circ = 120^\circ .\]

Ta có \[EF = OC\] (cùng bằng OF) và \[M,{\rm{ }}N\] lần lượt là trung điểm \[EF,{\rm{ }}OC\] nên \[FM = ON.\]

Xét \[\Delta AFM\] và \[\Delta AON\] có:

\[\widehat {AFM} = \widehat {AON} = 120^\circ \,;\]

\[AF = AO\] (tam giác \[OAF\] đều);

\[FM = ON\] (chứng minh trên).

Do đó \[\Delta AFM = \Delta AON{\rm{ }}\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right){\rm{.}}\]

Xét phương án C:

Từ kết quả câu b), ta được \[AM = AN\] và \[\widehat {FAM} = \widehat {OAN}\,.\]

Suy ra \[\Delta AMN\] cân tại \[A.\]

Ta có \[\widehat {FAO} = 60^\circ \] (do \[\Delta OAF\] đều).

Suy ra \[\widehat {FAM} + \widehat {MAO} = 60^\circ \] nên \[\widehat {OAN} + \widehat {MAO} = 60^\circ \] hay \[\widehat {MAN} = 60^\circ .\]

Xét \[\Delta AMN\] cân tại \[A\] có \[\widehat {MAN} = 60^\circ \] nên \[\Delta AMN\] đều.

Do đó phương án D sai.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

II. Thông hiểu

Mỗi góc của bát giác đều nội tiếp đường tròn tâm \[O\] có số đo là

Lời giải

Đáp án đúng là: D

Mỗi góc của bát giác đều nội tiếp đường tròn tâm  O  có số đo là (ảnh 1)

Số đo mỗi góc của một bát giác đều là:

\(\frac{{180^\circ .\left( {8 - 2} \right)}}{8} = 135^\circ \).

Vậy số đo mỗi góc của một bát giác đều là \(135^\circ \).

Lời giải

Đáp án đúng là: B

Trong các hình trên, các đa giác đều là hình vuông (tứ giác đều) và hình tam giác đều.

Vậy có 2 đa giác đều trong các hình trên.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Các phép quay có thể có với một đa giác đều tâm \[O\] là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Với một phép quay góc \(\alpha \) thì \(\alpha \) có thể nhận các giá trị:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay