Câu hỏi:

05/03/2020 1,912

Trong tập các số phức, cho phương trình z2-6z+m=1, m (1). Gọi m0 là một giá trị của m để phương trình (1) có hai nghiệm phân biệt z1,z2 thỏa mãn z1z1¯=z2z2¯ Hỏi trong khoảng (0;20) có bao nhiêu giá trị m ?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp

Biện luận để tìm trực tiếp nghiệm z1,z2. Sử dụng giả thiết để tìm ra giá trị m0

Lời giải chi tiết.

Viết lại phương trình đã cho thành  

Nếu m0=9z=3 Hay phương trình chỉ có một nghiệm. (Loại)

Nếu m0<9 thì phương trình đã cho có hai nghiệm thực  

Nếu m0>9 thì phương trình đã cho có hai nghiệm phức liên hợp là 

Khi đó 

Do đó m0>9 thỏa mãn yêu cầu bài toán.

Do bài toán đòi hỏi m0(0;20) nên

Vậy có 10 giá trị thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho số phức z=1+i. Số phức nghịch đảo của z là

Xem đáp án » 28/02/2020 41,534

Câu 2:

Cho số phức z=1-13i. Tìm số phức w=iz¯+3z được

Xem đáp án » 06/03/2021 7,555

Câu 3:

Cho số phức z thỏa mãn z(2-i)+13i=1. Tính mô đun của số phức z.

Xem đáp án » 05/03/2020 6,552

Câu 4:

Cho hai số phức  z1=2+3i và z2=-3-5i.

Tính tổng phần thực và phần ảo của số phức w=z1+z2.

Xem đáp án » 05/03/2020 5,846

Câu 5:

Số phức z thỏa mãn z=5 và số phức w=(1+i)z¯ Tìm w

Xem đáp án » 06/03/2021 4,693

Câu 6:

Gọi S là tập hợp các số thực m sao cho với mỗi mS có đúng một số phức thỏa mãn z-m=6zz-4 là số thuần ảo. Tính tổng của các phần tử của tập S.

Xem đáp án » 06/03/2021 4,266

Câu 7:

Trong các số phức: (1+i)2, (1+i)8, (1+i)3, (1+i)5 số phức nào là số thực?

Xem đáp án » 05/03/2020 3,676

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store