Các nhà khoa học đã xác định được độ phóng xạ của 1g mẫu carbon trong cơ thể sinh vật sống là \(0,231\;{\rm{Bq}}.\) Biết rằng, trong số các đồng vị của carbon có trong mẫu, chỉ có \(_6^{14}{\rm{C}}\) là đồng vị phóng xạ với chu kì bán rã là 5730 năm.
a) Xác định số nguyên tử \(_6^{14}{\rm{C}}\) có trong 1 g mẫu carbon đó.
b) Vào ngày 19/9/1991, trong khi đang tìm đường vượt qua dãy Otztal Alps, hai nhà leo núi người Đức đã phát hiện thấy xác ướp người cổ được bảo quản hầu như nguyên vẹn trong băng tuyết tại Hauslabjoch, khu vực giữa biên giới Áo và Italia. Xác ướp đó được đặt tên là người băng Otzi. Tại thời điểm này, các nhà khoa học đã đo được độ phóng xạ của 1 g mẫu carbon trong cơ thể người băng Otzi là \(0,121\;{\rm{Bq}}.\) Xác định niên đại của người băng đó.
Quảng cáo
Trả lời:
Hướng dẫn giải:
a) \(N = \frac{H}{\lambda } = \frac{H}{{\frac{{\ln 2}}{T}}} = \frac{{0,231}}{{\frac{{\ln 2}}{{5730.365.86400}}}} = 6,{02.10^{10}}\) nguyên tử.
b) \(H = {H_0}{.2^{ - \frac{t}{T}}} \Rightarrow 0,121 = 0,{231.2^{ - \frac{t}{{5730}}}} \Rightarrow t \approx 5345\) năm.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn Vật lí (Form 2025) ( 38.000₫ )
- 20 đề thi tốt nghiệp môn Vật lí (có đáp án chi tiết) ( 38.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số hạt U 235 và U238 cò lại lần lượt là: \(\left\{ \begin{array}{l}{N_1} = {N_{01}}{e^{ - \frac{{\ln 2}}{{{T_1}}}t}}\\{N_1} = {N_{01}}{e^{ - \frac{{\ln 2}}{{{T_1}}}t}}\end{array} \right.\)
\( \Rightarrow \frac{{{N_1}}}{{{N_2}}} = \frac{{{N_{01}}}}{{{N_{02}}}}{e^{t\left( {\frac{1}{{{T_2}}} - \frac{1}{{{T_1}}}} \right)\ln 2}} \Rightarrow \frac{7}{{1000}} = \frac{3}{{1000}}{e^{t\left( {\frac{1}{{4,5}} - \frac{1}{{0,7}}} \right)\ln 2}} \Rightarrow t = 1,74\) (tỉ năm).
Lời giải
\(\left\{ \begin{array}{l}{N_1} = a{N_0}.{e^{\frac{{ - \ln 3}}{{{T_1}}}t}}\\{N_2} = b{N_0}.{e^{ - \frac{{\ln 2}}{{{T_2}}}t}}\end{array} \right. \Rightarrow \frac{{{N_1}}}{{{N_2}}} = {e^{t\ln \left( {\frac{1}{{{T_2}}} - \frac{1}{{{T_1}}}} \right)}} \Rightarrow \frac{{140}}{1} = {e^{t\ln \left( {\frac{1}{{{T_2}}} - \frac{1}{{{T_1}}}} \right)}} \Rightarrow t \approx {6.10^9}\)(năm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. 22%.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.