Câu hỏi:

06/12/2024 4,496

Hiện nay trong quặng thiên nhiên có cả U238 và U235 theo tỉ lệ số nguyên tử là 140:1. Giả thiết ở thời điểm hình thành Trái Đất tỉ lệ trên là 1:1. Tính tuổi của Trái đất, biết chu kì bán rã củaU238 và U235 là T1 = 4,5.109 năm T2 = 0,713.109 năm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\left\{ \begin{array}{l}{N_1} = a{N_0}.{e^{\frac{{ - \ln 3}}{{{T_1}}}t}}\\{N_2} = b{N_0}.{e^{ - \frac{{\ln 2}}{{{T_2}}}t}}\end{array} \right. \Rightarrow \frac{{{N_1}}}{{{N_2}}} = {e^{t\ln \left( {\frac{1}{{{T_2}}} - \frac{1}{{{T_1}}}} \right)}} \Rightarrow \frac{{140}}{1} = {e^{t\ln \left( {\frac{1}{{{T_2}}} - \frac{1}{{{T_1}}}} \right)}} \Rightarrow t \approx {6.10^9}\)(năm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số hạt U 235 và U238 cò lại lần lượt là: \(\left\{ \begin{array}{l}{N_1} = {N_{01}}{e^{ - \frac{{\ln 2}}{{{T_1}}}t}}\\{N_1} = {N_{01}}{e^{ - \frac{{\ln 2}}{{{T_1}}}t}}\end{array} \right.\)

\( \Rightarrow \frac{{{N_1}}}{{{N_2}}} = \frac{{{N_{01}}}}{{{N_{02}}}}{e^{t\left( {\frac{1}{{{T_2}}} - \frac{1}{{{T_1}}}} \right)\ln 2}} \Rightarrow \frac{7}{{1000}} = \frac{3}{{1000}}{e^{t\left( {\frac{1}{{4,5}} - \frac{1}{{0,7}}} \right)\ln 2}} \Rightarrow t = 1,74\) (tỉ năm).