Cho hàm số \(y = \frac{{2{x^2} - 2x + 2}}{{ - x + 1}}\) có đồ thị \(\left( C \right)\).
a) Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) ∪ \(\left( {2; + \infty } \right)\).
b) Giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {\frac{3}{2};\frac{5}{2}} \right]\) bằng \( - \frac{{19}}{3}\).
c) Đồ thị hàm số \(\left( C \right)\) có tiệm cận xiên là đường thẳng \(2x + y = 0\).
d) Góc giữa hai đường tiệm cận của đồ thị hàm số bằng \(45^\circ \).
Cho hàm số \(y = \frac{{2{x^2} - 2x + 2}}{{ - x + 1}}\) có đồ thị \(\left( C \right)\).
a) Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) ∪ \(\left( {2; + \infty } \right)\).
b) Giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {\frac{3}{2};\frac{5}{2}} \right]\) bằng \( - \frac{{19}}{3}\).
c) Đồ thị hàm số \(\left( C \right)\) có tiệm cận xiên là đường thẳng \(2x + y = 0\).
d) Góc giữa hai đường tiệm cận của đồ thị hàm số bằng \(45^\circ \).
Quảng cáo
Trả lời:

a) S, b) S, c) Đ, d) S
a) Ta có \(y' = \frac{{ - 2{x^2} + 4x}}{{{{\left( { - x + 1} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\) và có bảng biến thiên như sau

Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\).
b) Ta có \(y\left( {\frac{3}{2}} \right) = - 7;y\left( 2 \right) = - 6;y\left( {\frac{5}{2}} \right) = - \frac{{19}}{3}\).
Giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {\frac{3}{2};\frac{5}{2}} \right]\) bằng \( - 7\) đạt tại \(x = \frac{3}{2}\).
c) Ta có \(2x + y = 0\)\( \Rightarrow y = - 2x\).
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{2{x^2} - 2x + 2}}{{ - x + 1}} - \left( { - 2x} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{2}{{ - x + 1}} = 0\) nên đồ thị có tiệm cận xiên là đường thẳng \(2x + y = 0\) hay \(y = - 2x\).
d) Ta có \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{2{x^2} - 2x + 2}}{{ - x + 1}} = + \infty \); \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2{x^2} - 2x + 2}}{{ - x + 1}} = - \infty \) nên \(x = 1\) là tiệm cận đứng của đồ thị hàm số.
Ta có \({d_1}:x - 1 = 0 \Rightarrow \overrightarrow {{n_1}} = \left( {1;0} \right)\); \({d_2}:2x + y = 0\)\( \Rightarrow \overrightarrow {{n_2}} = \left( {2;1} \right)\).
Ta có \(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.2 + 0.1} \right|}}{{\sqrt {{1^2} + {0^2}} .\sqrt {{2^2} + {1^2}} }} = \frac{2}{{\sqrt 5 }}\)\( \Rightarrow \left( {{d_1},{d_2}} \right) \approx 26^\circ 33'\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vị trí của máy bay sau 5 phút tiếp theo là \(C(x;y;z)\).
Vì hướng của máy bay không đổi nên \(\overrightarrow {AB} \) và \(\overrightarrow {BC} \) cùng hướng.
Do vận tốc của máy bay không đổi và thời gian bay từ \(A\) đến \(B\) gấp đôi thời gian bay từ \(B\) đến \(C\) nên \(AB = 2BC\).
Do đó \(\overrightarrow {BC} = \frac{1}{2}\overrightarrow {AB} = \left( {\frac{{940 - 800}}{2};\frac{{550 - 500}}{2};\frac{{9 - 7}}{2}} \right) = \left( {70;25;1} \right)\).
Mặt khác, \(\overrightarrow {BC} = (x - 940;y - 550;z - 9)\) nên \(\left\{ {\begin{array}{*{20}{l}}{x - 940 = 70}\\{y - 550 = 25}\\{z - 9 = 1}\end{array}} \right.\)
Từ đó \(\left\{ {\begin{array}{*{20}{l}}{x = 1010}\\{y = 575}\\{z = 10}\end{array}} \right. \Rightarrow x + y + z = 1595\).
Lời giải
Phương trình hoành độ giao điểm:
\({x^3} - 3mx + 3 = 3x + 1\)\( \Leftrightarrow {x^3} - 3x + 2 = 3mx\)\( \Leftrightarrow 3m = \frac{{{x^3} - 3x + 2}}{x}\) (1) (Do \(x = 0\)không là nghiệm của phương trình).
Xét hàm \(f\left( x \right) = \frac{{{x^3} - 3x + 2}}{x} = {x^2} - 3 + \frac{2}{x}\); \(f'\left( x \right) = 2x - \frac{2}{{{x^2}}} = \frac{{2{x^3} - 2}}{{{x^2}}}\); \(f'\left( x \right) = 0 \Leftrightarrow x = 1\).
Bảng biến thiên.

Khi đó yêu cầu bài toán \( \Leftrightarrow m < 0\).
Mà \(m\) nguyên và \(m \in \left[ { - 2024;2024} \right]\) nên có \(2024\) giá trị thỏa mãn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.