Câu hỏi:
12/12/2024 118,553Trong không gian với một hệ trục toạ độ cho trước (đơn vị đo lấy theo kilômét), ra đa phát hiện một chiếc máy bay di chuyển với vận tốc và hướng không đổi từ điểm \[A\left( {800;500;7} \right)\] đến điểm \[B\left( {940;550;9} \right)\] trong 10 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì toạ độ của máy bay sau 5 phút tiếp theo là \(C(x;y;z)\). Tính \(x + y + z\).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Vị trí của máy bay sau 5 phút tiếp theo là \(C(x;y;z)\).
Vì hướng của máy bay không đổi nên \(\overrightarrow {AB} \) và \(\overrightarrow {BC} \) cùng hướng.
Do vận tốc của máy bay không đổi và thời gian bay từ \(A\) đến \(B\) gấp đôi thời gian bay từ \(B\) đến \(C\) nên \(AB = 2BC\).
Do đó \(\overrightarrow {BC} = \frac{1}{2}\overrightarrow {AB} = \left( {\frac{{940 - 800}}{2};\frac{{550 - 500}}{2};\frac{{9 - 7}}{2}} \right) = \left( {70;25;1} \right)\).
Mặt khác, \(\overrightarrow {BC} = (x - 940;y - 550;z - 9)\) nên \(\left\{ {\begin{array}{*{20}{l}}{x - 940 = 70}\\{y - 550 = 25}\\{z - 9 = 1}\end{array}} \right.\)
Từ đó \(\left\{ {\begin{array}{*{20}{l}}{x = 1010}\\{y = 575}\\{z = 10}\end{array}} \right. \Rightarrow x + y + z = 1595\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2024;2024} \right]\) để đồ thị hàm số \(y = {x^3} - 3mx + 3\) và đường thẳng \(y = 3x + 1\) có duy nhất một điểm chung?
Câu 2:
Cho hình hộp \[ABCD.A'B'C'D'\]. Gọi \(M\), \(N\) lần lượt là các điểm trên đoạn \(AC\)và \(C'D\) sao cho, \(DN = \frac{1}{3}DC'\), \(AM = \frac{2}{3}AC\). Khi phân tích \(\overrightarrow {BN} = x.\overrightarrow {BA} + y.\overrightarrow {BC} + z.\overrightarrow {BB'} \) thì giá trị \(x + y + z\) bằng bao nhiêu?
Câu 3:
Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ dưới đây:
a) Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 1} \right)\).
b) Hàm số đạt cực tiểu tại \(x = 1\).
c) Đồ thị hàm số cắt trục Oy tại điểm có tọa độ \(\left( {0;1} \right)\).
d) \(2a + 3b + c = 9\).
Câu 4:
Cho hình hộp \(ABCD.A'B'C'D'\). Tính tổng \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {A'C'} \).
Câu 6:
Cho hàm số \(y = \frac{{2{x^2} - 2x + 2}}{{ - x + 1}}\) có đồ thị \(\left( C \right)\).
a) Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) ∪ \(\left( {2; + \infty } \right)\).
b) Giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {\frac{3}{2};\frac{5}{2}} \right]\) bằng \( - \frac{{19}}{3}\).
c) Đồ thị hàm số \(\left( C \right)\) có tiệm cận xiên là đường thẳng \(2x + y = 0\).
d) Góc giữa hai đường tiệm cận của đồ thị hàm số bằng \(45^\circ \).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận