Xét mẫu số liệu ghép nhóm cho bởi bảng sau
Chọn khẳng định sai
Xét mẫu số liệu ghép nhóm cho bởi bảng sau

Chọn khẳng định sai
A. Cỡ mẫu là \(n = {n_1} + {n_2} + ... + {n_k}\).
B. Số trung bình của mẫu số liệu ghép nhóm là \(\overline x = \frac{{{n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}}}{n}\).
C. Phương sai của mẫu số liệu ghép nhóm là \({s^2} = \frac{1}{n}\left( {{n_1}c_1^2 + {n_2}c_2^2 + ... + {n_k}c_k^2 - {{\overline x }^2}} \right)\).
Quảng cáo
Trả lời:

Đáp án đúng là: C
Phương sai của mẫu số liệu ghép nhóm là \({s^2} = \frac{1}{n}\left( {{n_1}c_1^2 + {n_2}c_2^2 + ... + {n_k}c_k^2} \right) - {\overline x ^2}\).
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vị trí của máy bay sau 5 phút tiếp theo là \(C(x;y;z)\).
Vì hướng của máy bay không đổi nên \(\overrightarrow {AB} \) và \(\overrightarrow {BC} \) cùng hướng.
Do vận tốc của máy bay không đổi và thời gian bay từ \(A\) đến \(B\) gấp đôi thời gian bay từ \(B\) đến \(C\) nên \(AB = 2BC\).
Do đó \(\overrightarrow {BC} = \frac{1}{2}\overrightarrow {AB} = \left( {\frac{{940 - 800}}{2};\frac{{550 - 500}}{2};\frac{{9 - 7}}{2}} \right) = \left( {70;25;1} \right)\).
Mặt khác, \(\overrightarrow {BC} = (x - 940;y - 550;z - 9)\) nên \(\left\{ {\begin{array}{*{20}{l}}{x - 940 = 70}\\{y - 550 = 25}\\{z - 9 = 1}\end{array}} \right.\)
Từ đó \(\left\{ {\begin{array}{*{20}{l}}{x = 1010}\\{y = 575}\\{z = 10}\end{array}} \right. \Rightarrow x + y + z = 1595\).
Lời giải
a) S, b) S, c) Đ, d) S
a) Dựa vào đồ thị ta thấy hàm số đồng biến trên khoảng \(\left( { - \infty ;{x_0}} \right)\) với \( - 2 < {x_0} < - 1\).
b) Hàm số đạt cực tiểu tại \(x = 0,{y_{CT}} = 1\).
c) Đồ thị hàm số cắt trục Oy tại điểm có tọa độ \(\left( {0;1} \right)\).
d) Đồ thị đi qua ba điểm \(\left( { - 2;1} \right),\left( { - 1;2} \right),\left( {0;1} \right)\) và đạt cực trị tại \(x = 1\) nên ta có hệ:
\(\left\{ \begin{array}{l} - 8a + 4b - 2c + d = 1\\ - a + b - c + d = 2\\d = 1\\c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\\c = 0\\d = 1\end{array} \right. \Rightarrow 2a + 3b + c = 8\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(2\overrightarrow {AA'} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.