Câu hỏi:

12/12/2024 1,218

Người ta muốn xây một cái bể hình hộp đứng có thể tích \(V = 18\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\), biết đáy bể là hình chữ nhật có chiều dài gấp \(3\) lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao \(h\) bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(x\)\(\left( {x > 0} \right)\) là chiều rộng hình chữ nhật đáy bể, suy ra chiều dài hình chữ nhật đáy bể là \(3x.\)

\(V = h.x.3x = h.3{x^2} = 18\) \( \Rightarrow h = \frac{{18}}{{3{x^2}}} = \frac{6}{{{x^2}}}\).

Gọi \(P\) là diện tích xung quanh cộng với diện tích một đáy bể của hình hộp chữ nhật.

Nguyên vật liệu ít nhất khi \(P\) nhỏ nhất.

\(P = 2hx + 2.h.3x + 3{x^2} = 2.\frac{6}{{{x^2}}}.x + 2.\frac{6}{{{x^2}}}.3x + 3{x^2} = \frac{{48}}{x} + 3{x^2}.\)

Đặt \(f\left( x \right) = \frac{{48}}{x} + 3{x^2}\), \(\left( {x > 0} \right)\).

Ta có hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\)

\(f'\left( x \right) = \frac{{ - 48}}{{{x^2}}} + 6x\),\(f'\left( x \right) = 0 \Leftrightarrow \frac{{ - 48}}{{{x^2}}} + 6x = 0 \Leftrightarrow {x^3} = 8 \Leftrightarrow x = 2\).

Bảng biến thiên:

Người ta muốn xây một cái bể hình hộp đứng có thể tích (V = 18( {\rm{m}}^{\rm{3}), biết đáy bể là hình chữ (ảnh 1)

Suy ra vật liệu ít nhất khi \(h = \frac{6}{{{x^2}}} = \frac{6}{4} = 1,5\left( {\rm{m}} \right)\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vị trí của máy bay sau 5 phút tiếp theo là \(C(x;y;z)\).

Vì hướng của máy bay không đổi nên \(\overrightarrow {AB} \)\(\overrightarrow {BC} \) cùng hướng.

Do vận tốc của máy bay không đổi và thời gian bay từ \(A\) đến \(B\) gấp đôi thời gian bay từ \(B\) đến \(C\) nên \(AB = 2BC\).

Do đó \(\overrightarrow {BC} = \frac{1}{2}\overrightarrow {AB} = \left( {\frac{{940 - 800}}{2};\frac{{550 - 500}}{2};\frac{{9 - 7}}{2}} \right) = \left( {70;25;1} \right)\).

Mặt khác, \(\overrightarrow {BC} = (x - 940;y - 550;z - 9)\) nên \(\left\{ {\begin{array}{*{20}{l}}{x - 940 = 70}\\{y - 550 = 25}\\{z - 9 = 1}\end{array}} \right.\)

Từ đó \(\left\{ {\begin{array}{*{20}{l}}{x = 1010}\\{y = 575}\\{z = 10}\end{array}} \right. \Rightarrow x + y + z = 1595\).

Lời giải

Phương trình hoành độ giao điểm:

\({x^3} - 3mx + 3 = 3x + 1\)\( \Leftrightarrow {x^3} - 3x + 2 = 3mx\)\( \Leftrightarrow 3m = \frac{{{x^3} - 3x + 2}}{x}\) (1) (Do \(x = 0\)không là nghiệm của phương trình).

Xét hàm \(f\left( x \right) = \frac{{{x^3} - 3x + 2}}{x} = {x^2} - 3 + \frac{2}{x}\); \(f'\left( x \right) = 2x - \frac{2}{{{x^2}}} = \frac{{2{x^3} - 2}}{{{x^2}}}\); \(f'\left( x \right) = 0 \Leftrightarrow x = 1\).

Bảng biến thiên.

Có bao nhiêu giá trị nguyên của tham số \(m  { - 2024;2024}) để đồ thị hàm số  (ảnh 1)

Khi đó yêu cầu bài toán \( \Leftrightarrow m < 0\).

\(m\) nguyên và \(m \in \left[ { - 2024;2024} \right]\) nên có \(2024\) giá trị thỏa mãn.

Câu 4

Cho hình hộp \(ABCD.A'B'C'D'\). Tính tổng \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {A'C'} \).

Cho hình hộp \(ABCD.A'B'C'D'\). Tính tổng \( {AB}  +  {AD}  +  {A'C'} \). (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Xét mẫu số liệu ghép nhóm cho bởi bảng sau

Xét mẫu số liệu ghép nhóm cho bởi bảng sau  Chọn khẳng định sai  A. Cỡ mẫu là \(n = {n_1} + {n_2} + ... + {n_k}\). (ảnh 1)

Chọn khẳng định sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay