Câu hỏi:

19/08/2025 3,044 Lưu

Người ta muốn xây một cái bể hình hộp đứng có thể tích \(V = 18\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\), biết đáy bể là hình chữ nhật có chiều dài gấp \(3\) lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao \(h\) bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\)\(\left( {x > 0} \right)\) là chiều rộng hình chữ nhật đáy bể, suy ra chiều dài hình chữ nhật đáy bể là \(3x.\)

\(V = h.x.3x = h.3{x^2} = 18\) \( \Rightarrow h = \frac{{18}}{{3{x^2}}} = \frac{6}{{{x^2}}}\).

Gọi \(P\) là diện tích xung quanh cộng với diện tích một đáy bể của hình hộp chữ nhật.

Nguyên vật liệu ít nhất khi \(P\) nhỏ nhất.

\(P = 2hx + 2.h.3x + 3{x^2} = 2.\frac{6}{{{x^2}}}.x + 2.\frac{6}{{{x^2}}}.3x + 3{x^2} = \frac{{48}}{x} + 3{x^2}.\)

Đặt \(f\left( x \right) = \frac{{48}}{x} + 3{x^2}\), \(\left( {x > 0} \right)\).

Ta có hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\)

\(f'\left( x \right) = \frac{{ - 48}}{{{x^2}}} + 6x\),\(f'\left( x \right) = 0 \Leftrightarrow \frac{{ - 48}}{{{x^2}}} + 6x = 0 \Leftrightarrow {x^3} = 8 \Leftrightarrow x = 2\).

Bảng biến thiên:

Người ta muốn xây một cái bể hình hộp đứng có thể tích (V = 18( {\rm{m}}^{\rm{3}), biết đáy bể là hình chữ (ảnh 1)

Suy ra vật liệu ít nhất khi \(h = \frac{6}{{{x^2}}} = \frac{6}{4} = 1,5\left( {\rm{m}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vị trí của máy bay sau 5 phút tiếp theo là \(C(x;y;z)\).

Vì hướng của máy bay không đổi nên \(\overrightarrow {AB} \)\(\overrightarrow {BC} \) cùng hướng.

Do vận tốc của máy bay không đổi và thời gian bay từ \(A\) đến \(B\) gấp đôi thời gian bay từ \(B\) đến \(C\) nên \(AB = 2BC\).

Do đó \(\overrightarrow {BC} = \frac{1}{2}\overrightarrow {AB} = \left( {\frac{{940 - 800}}{2};\frac{{550 - 500}}{2};\frac{{9 - 7}}{2}} \right) = \left( {70;25;1} \right)\).

Mặt khác, \(\overrightarrow {BC} = (x - 940;y - 550;z - 9)\) nên \(\left\{ {\begin{array}{*{20}{l}}{x - 940 = 70}\\{y - 550 = 25}\\{z - 9 = 1}\end{array}} \right.\)

Từ đó \(\left\{ {\begin{array}{*{20}{l}}{x = 1010}\\{y = 575}\\{z = 10}\end{array}} \right. \Rightarrow x + y + z = 1595\).

Lời giải

a) S, b) S, c) Đ, d) S

a) Dựa vào đồ thị ta thấy hàm số đồng biến trên khoảng \(\left( { - \infty ;{x_0}} \right)\) với \( - 2 < {x_0} < - 1\).

b) Hàm số đạt cực tiểu tại \(x = 0,{y_{CT}} = 1\).

c) Đồ thị hàm số cắt trục Oy tại điểm có tọa độ \(\left( {0;1} \right)\).

d) Đồ thị đi qua ba điểm \(\left( { - 2;1} \right),\left( { - 1;2} \right),\left( {0;1} \right)\) và đạt cực trị tại \(x = 1\) nên ta có hệ:

\(\left\{ \begin{array}{l} - 8a + 4b - 2c + d = 1\\ - a + b - c + d = 2\\d = 1\\c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\\c = 0\\d = 1\end{array} \right. \Rightarrow 2a + 3b + c = 8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(2\overrightarrow {AA'} \).                            

B. \(\overrightarrow 0 \).        
C. \(2\overrightarrow {AC} \).                                 
D. \(2\overrightarrow {C'A'} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP