Câu hỏi:
12/12/2024 2,845Quảng cáo
Trả lời:
Đáp án đúng là: C
Tập xác định: \(D = \mathbb{R}{\rm{\backslash }}\left\{ 1 \right\}\).
Ta có \(y' = \frac{{\left( {2x - 2} \right)\left( {x - 1} \right) - \left( {{x^2} - 2x + 5} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}}\).
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 3\end{array} \right.\).
Bảng biến thiên
Từ bảng biến thiên suy ra: Hàm số nghịch biến trên mỗi khoảng \(\left( { - 1;\,1} \right)\)và \(\left( {1\,;\,3} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(M \in \left( C \right)\) \( \Rightarrow M\left( {{x_0};{x_0} + \frac{1}{{{x_0} + 1}}} \right)\) với \({x_0} > - 1\).
Ta có \(I{M^2} = {\left( {{x_0} + 1} \right)^2} + {\left( {{x_0} + 1 + \frac{1}{{{x_0} + 1}}} \right)^2} = 2{\left( {{x_0} + 1} \right)^2} + \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}} + 2\).
Đặt \(t = {\left( {{x_0} + 1} \right)^2},t > 0\) thì khi đó \(I{M^2} = 2t + 2 + \frac{1}{t}\).
Xét hàm số \(y = 2t + 2 + \frac{1}{t}\) có \(y' = 2 - \frac{1}{{{t^2}}} = 0 \Leftrightarrow t = \frac{1}{{\sqrt 2 }}\).
Bảng biến thiên
Để thuyền thu được sóng tốt nhất \( \Leftrightarrow IM\) ngắn nhất \( \Leftrightarrow {x_0} = \frac{1}{{\sqrt[4]{2}}} - 1\).
Vậy \(n = 4;a = 2;b = 1 \Rightarrow a \cdot n + b = 9\).
Lời giải
a) Đ, b) S, c) Đ, d) Đ
a) Tập xác định \(D = \mathbb{R}\backslash \left\{ m \right\}\).
Ta có \(y' = \frac{{{m^2} - m + 2}}{{{{\left( {x - m} \right)}^2}}} > 0,\forall x \ne m\).
Do đó hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ;m} \right)\) và \(\left( {m; + \infty } \right)\).
Vậy khi \(m = 1\) hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
b) Bảng biến thiên
Với \(m = 1\) thì giá trị lớn nhất của hàm số \(f\left( 4 \right) = \frac{1}{3}\).
c) Ta có \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - {m^2} - 2}}{{x - m}} = 1\); \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{x - {m^2} - 2}}{{x - m}} = 1\).
Suy ra \(y = 1\) là tiệm cận ngang của đồ thị hàm số.
d) Để giá trị lớn nhất của hàm số \(y = \frac{{x - {m^2} - 2}}{{x - m}}\) trên đoạn \(\left[ {0;4} \right]\) bằng \( - 1\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 0\\\frac{{2 - {m^2}}}{{4 - m}} = - 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m < 0\\{m^2} + m - 6 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m < 0\\m = 2,m = - 3\end{array} \right.\)\( \Leftrightarrow m = - 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận