Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) có bảng biến thiên như hình vẽ
a) Hàm số đã cho nghịch biến trên \(\mathbb{R}\backslash \left\{ 1 \right\}\).
b) Giá trị nhỏ nhất của hàm số là 2.
c) Tâm đối xứng của đồ thị hàm số là \(I\left( {1;2} \right)\).
d) Có 2024 số nguyên \(m\) trên \(\left[ { - 2024;2024} \right]\) để phương trình \(\left| {\frac{{ax + b}}{{cx + d}}} \right| = m\) có hai nghiệm phân biệt.
Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) có bảng biến thiên như hình vẽ

b) Giá trị nhỏ nhất của hàm số là 2.
c) Tâm đối xứng của đồ thị hàm số là \(I\left( {1;2} \right)\).
d) Có 2024 số nguyên \(m\) trên \(\left[ { - 2024;2024} \right]\) để phương trình \(\left| {\frac{{ax + b}}{{cx + d}}} \right| = m\) có hai nghiệm phân biệt.
Quảng cáo
Trả lời:
a) S, b) S, c) Đ, d) S
a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
b) Hàm số không có giá trị nhỏ nhất.
c) Đồ thị hàm số nhận \(x = 1\) làm tiệm cận đứng và \(y = 2\) làm tiệm cận ngang nên tâm đối xứng của đồ thị là \(I\left( {1;2} \right)\).
d) Từ bảng biến thiên của hàm số \(f\left( x \right)\) ta có bảng biến thiên của hàm số \(\left| {f\left( x \right)} \right|\) như sau (ở đây \({x_0} = - \frac{b}{a}\)).

Dựa vào bảng biến thiên ta thấy phương trình \(\left| {\frac{{ax + b}}{{cx + d}}} \right| = m\) có 2 nghiệm phân biệt khi và chỉ khi \(2 \ne m > 0\), do đó có 2023 giá trị nguyên của tham số \(m\) thỏa yêu cầu.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục toạ độ \(Oxyz\) với gốc \(O\) đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục \(Ox\) hướng về phía nam, trục \(Oy\) hướng về phía đông và trục \({\rm{Oz}}\) hướng thẳng đứng lên trời (tham khảo hình vẽ), đơn vị đo lấy theo kilômét.

Chiếc khinh khí cầu thứ nhất và thứ hai ở vị trí \(A,B\). Ta có \(A\left( {\frac{5}{2};2;\frac{4}{5}} \right),B\left( { - \frac{3}{2}; - 3;\frac{3}{5}} \right)\).
Gọi \(C\) là điểm đối xứng của \(A\) qua mặt phẳng \(\left( {Oxy} \right)\), \(C\left( {\frac{5}{2};2; - \frac{4}{5}} \right)\).
Khi đó \(I = BC \cap \left( {Oxy} \right)\).
\(\overrightarrow {BC} = \left( {4;5; - \frac{7}{5}} \right)\). \(I \in \left( {Oxy} \right) \Rightarrow I\left( {x;y;0} \right) \Rightarrow \overrightarrow {BI} = \left( {x + \frac{3}{2};y + 3; - \frac{3}{5}} \right)\)
\(\overrightarrow {BC} ,\overrightarrow {BI} \) cùng phương nên \(\frac{{x + \frac{3}{2}}}{4} = \frac{{y + 3}}{5} = \frac{3}{7} \Rightarrow \left\{ \begin{array}{l}x = \frac{3}{{14}}\\y = - \frac{6}{7}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = \frac{3}{{14}}\\b = \frac{6}{7}\end{array} \right. \Rightarrow 2a + 3b = 3\).
Lời giải
Ta có \(C'\left( v \right) = - \frac{{5400}}{{{v^2}}} + \frac{3}{2} = \frac{{3\left( {v - 60} \right)\left( {v + 60} \right)}}{{2{v^2}}}\);
\(C'\left( v \right) = 0\)\( \Leftrightarrow v = - 60\)(loại) hoặc \(v = 60\) (nhận).
Trên khoảng \(\left( {0;60} \right)\), \(C'\left( v \right) < 0\) nên hàm số nghịch biến trên khoảng này.
Trên khoảng \(\left( {60;120} \right)\), \(C'\left( v \right) > 0\) nên hàm số đồng biến trên khoảng này.
Hàm số đạt cực tiểu tại \(v = 60,{C_{CT}} = C\left( {60} \right) = 180\).
Như vậy để tiết kiệm xăng nhất tài xế nên chạy xe với tốc độ trung bình là 60 km/h.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.