Câu hỏi:
12/12/2024 3,633
Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) có bảng biến thiên như hình vẽ
a) Hàm số đã cho nghịch biến trên \(\mathbb{R}\backslash \left\{ 1 \right\}\).
b) Giá trị nhỏ nhất của hàm số là 2.
c) Tâm đối xứng của đồ thị hàm số là \(I\left( {1;2} \right)\).
d) Có 2024 số nguyên \(m\) trên \(\left[ { - 2024;2024} \right]\) để phương trình \(\left| {\frac{{ax + b}}{{cx + d}}} \right| = m\) có hai nghiệm phân biệt.
Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) có bảng biến thiên như hình vẽ

b) Giá trị nhỏ nhất của hàm số là 2.
c) Tâm đối xứng của đồ thị hàm số là \(I\left( {1;2} \right)\).
d) Có 2024 số nguyên \(m\) trên \(\left[ { - 2024;2024} \right]\) để phương trình \(\left| {\frac{{ax + b}}{{cx + d}}} \right| = m\) có hai nghiệm phân biệt.
Quảng cáo
Trả lời:
a) S, b) S, c) Đ, d) S
a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
b) Hàm số không có giá trị nhỏ nhất.
c) Đồ thị hàm số nhận \(x = 1\) làm tiệm cận đứng và \(y = 2\) làm tiệm cận ngang nên tâm đối xứng của đồ thị là \(I\left( {1;2} \right)\).
d) Từ bảng biến thiên của hàm số \(f\left( x \right)\) ta có bảng biến thiên của hàm số \(\left| {f\left( x \right)} \right|\) như sau (ở đây \({x_0} = - \frac{b}{a}\)).

Dựa vào bảng biến thiên ta thấy phương trình \(\left| {\frac{{ax + b}}{{cx + d}}} \right| = m\) có 2 nghiệm phân biệt khi và chỉ khi \(2 \ne m > 0\), do đó có 2023 giá trị nguyên của tham số \(m\) thỏa yêu cầu.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục toạ độ \(Oxyz\) với gốc \(O\) đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục \(Ox\) hướng về phía nam, trục \(Oy\) hướng về phía đông và trục \({\rm{Oz}}\) hướng thẳng đứng lên trời (tham khảo hình vẽ), đơn vị đo lấy theo kilômét.

Chiếc khinh khí cầu thứ nhất và thứ hai ở vị trí \(A,B\). Ta có \(A\left( {\frac{5}{2};2;\frac{4}{5}} \right),B\left( { - \frac{3}{2}; - 3;\frac{3}{5}} \right)\).
Gọi \(C\) là điểm đối xứng của \(A\) qua mặt phẳng \(\left( {Oxy} \right)\), \(C\left( {\frac{5}{2};2; - \frac{4}{5}} \right)\).
Khi đó \(I = BC \cap \left( {Oxy} \right)\).
\(\overrightarrow {BC} = \left( {4;5; - \frac{7}{5}} \right)\). \(I \in \left( {Oxy} \right) \Rightarrow I\left( {x;y;0} \right) \Rightarrow \overrightarrow {BI} = \left( {x + \frac{3}{2};y + 3; - \frac{3}{5}} \right)\)
\(\overrightarrow {BC} ,\overrightarrow {BI} \) cùng phương nên \(\frac{{x + \frac{3}{2}}}{4} = \frac{{y + 3}}{5} = \frac{3}{7} \Rightarrow \left\{ \begin{array}{l}x = \frac{3}{{14}}\\y = - \frac{6}{7}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = \frac{3}{{14}}\\b = \frac{6}{7}\end{array} \right. \Rightarrow 2a + 3b = 3\).
Lời giải
Đáp án đúng là: B
Khoảng biến thiên của mẫu số liệu ghép nhóm là:\(R = 30 - 10 = 20\) (triệu đồng /\({{\rm{m}}^{\rm{2}}}\)).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.