Hai chiếc khinh khí cầu bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm cách điểm xuất phát \(2,5{\rm{\;km}}\) về phía nam và \({\rm{2\;km}}\) về phía đông, đồng thời cách mặt đất \(0,8{\rm{\;km}}\). Chiếc thứ hai nằm cách điểm xuất phát \(1,5{\rm{\;km}}\) về phía bắc và \(3{\rm{ km}}\) về phía tây, đồng thời cách mặt đất \(0,6{\rm{\;km}}\). Người ta cần tìm một vị trí trên mặt đất để tiếp nhiên liệu cho hai khinh khí cầu sao cho tổng khoảng cách từ vị trí đó tới hai khinh khí cầu nhỏ nhất. Giả sử vị trí cần tìm cách địa điểm hai khinh khí cầu bay lên là \(a\,{\rm{km}}\) theo hướng nam và \(b\,{\rm{km}}\) theo hướng tây. Tính tổng \(2a + 3b\).
Hai chiếc khinh khí cầu bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm cách điểm xuất phát \(2,5{\rm{\;km}}\) về phía nam và \({\rm{2\;km}}\) về phía đông, đồng thời cách mặt đất \(0,8{\rm{\;km}}\). Chiếc thứ hai nằm cách điểm xuất phát \(1,5{\rm{\;km}}\) về phía bắc và \(3{\rm{ km}}\) về phía tây, đồng thời cách mặt đất \(0,6{\rm{\;km}}\). Người ta cần tìm một vị trí trên mặt đất để tiếp nhiên liệu cho hai khinh khí cầu sao cho tổng khoảng cách từ vị trí đó tới hai khinh khí cầu nhỏ nhất. Giả sử vị trí cần tìm cách địa điểm hai khinh khí cầu bay lên là \(a\,{\rm{km}}\) theo hướng nam và \(b\,{\rm{km}}\) theo hướng tây. Tính tổng \(2a + 3b\).
Quảng cáo
Trả lời:

Chọn hệ trục toạ độ \(Oxyz\) với gốc \(O\) đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục \(Ox\) hướng về phía nam, trục \(Oy\) hướng về phía đông và trục \({\rm{Oz}}\) hướng thẳng đứng lên trời (tham khảo hình vẽ), đơn vị đo lấy theo kilômét.

Chiếc khinh khí cầu thứ nhất và thứ hai ở vị trí \(A,B\). Ta có \(A\left( {\frac{5}{2};2;\frac{4}{5}} \right),B\left( { - \frac{3}{2}; - 3;\frac{3}{5}} \right)\).
Gọi \(C\) là điểm đối xứng của \(A\) qua mặt phẳng \(\left( {Oxy} \right)\), \(C\left( {\frac{5}{2};2; - \frac{4}{5}} \right)\).
Khi đó \(I = BC \cap \left( {Oxy} \right)\).
\(\overrightarrow {BC} = \left( {4;5; - \frac{7}{5}} \right)\). \(I \in \left( {Oxy} \right) \Rightarrow I\left( {x;y;0} \right) \Rightarrow \overrightarrow {BI} = \left( {x + \frac{3}{2};y + 3; - \frac{3}{5}} \right)\)
\(\overrightarrow {BC} ,\overrightarrow {BI} \) cùng phương nên \(\frac{{x + \frac{3}{2}}}{4} = \frac{{y + 3}}{5} = \frac{3}{7} \Rightarrow \left\{ \begin{array}{l}x = \frac{3}{{14}}\\y = - \frac{6}{7}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = \frac{3}{{14}}\\b = \frac{6}{7}\end{array} \right. \Rightarrow 2a + 3b = 3\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hàm số xác định và liên tục trên \(D = \left( { - \infty ;0} \right] \cup \left[ {1; + \infty } \right)\). Ta có:
\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x - \sqrt {{x^2} - x} }}{x} = \mathop {\lim }\limits_{x \to + \infty } \left( {2 - \sqrt {1 - \frac{1}{x}} } \right) = 1\).
\(b = \mathop {\lim }\limits_{x \to + \infty } \left( {f\left( x \right) - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {x - \sqrt {{x^2} - x} } \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{x}{{x + \sqrt {{x^2} - x} }} = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{1 + \sqrt {1 - \frac{1}{x}} }} = \frac{1}{2}\).
\( \Rightarrow y = x + \frac{1}{2}\) là tiệm cận xiên của đồ thị hàm số khi \(x \to + \infty \).
\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x - \sqrt {{x^2} - x} }}{x} = \mathop {\lim }\limits_{x \to - \infty } \left( {2 + \sqrt {1 - \frac{1}{x}} } \right) = 3\).
\(b = \mathop {\lim }\limits_{x \to - \infty } \left( {f\left( x \right) - 3x} \right) = - \mathop {\lim }\limits_{x \to - \infty } \left( {x + \sqrt {{x^2} - x} } \right) = - \mathop {\lim }\limits_{x \to - \infty } \frac{x}{{x - \sqrt {{x^2} - x} }} = - \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{1 + \sqrt {1 - \frac{1}{x}} }} = - \frac{1}{2}\).
\( \Rightarrow y = 3x - \frac{1}{2}\) là tiệm cận xiên của đồ thị hàm số khi \(x \to - \infty \).
Vậy đồ thị hàm số có 2 đường tiệm cận xiên.
Lời giải
Ta có \(C'\left( v \right) = - \frac{{5400}}{{{v^2}}} + \frac{3}{2} = \frac{{3\left( {v - 60} \right)\left( {v + 60} \right)}}{{2{v^2}}}\);
\(C'\left( v \right) = 0\)\( \Leftrightarrow v = - 60\)(loại) hoặc \(v = 60\) (nhận).
Trên khoảng \(\left( {0;60} \right)\), \(C'\left( v \right) < 0\) nên hàm số nghịch biến trên khoảng này.
Trên khoảng \(\left( {60;120} \right)\), \(C'\left( v \right) > 0\) nên hàm số đồng biến trên khoảng này.
Hàm số đạt cực tiểu tại \(v = 60,{C_{CT}} = C\left( {60} \right) = 180\).
Như vậy để tiết kiệm xăng nhất tài xế nên chạy xe với tốc độ trung bình là 60 km/h.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.