Cho hàm số \(y = {x^3} - 3m{x^2} + 3\left( {{m^2} - 1} \right)x + 2025\), (tham số \(m\)). Xét tính đúng sai của các khẳng định sau
a) Khi \(m = 1\) thì hàm số đạt cực tiểu tại \(x = 2\).
b) Khi \(m = 1\) thì hàm số đồng biến trên khoảng \(\left( {0;2} \right)\).
c) Khi \(m = 1\) thì hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\) bằng \( - 4\).
d) Có tất cả 1 giá trị nguyên của \(m\) để hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\).
Cho hàm số \(y = {x^3} - 3m{x^2} + 3\left( {{m^2} - 1} \right)x + 2025\), (tham số \(m\)). Xét tính đúng sai của các khẳng định sau
a) Khi \(m = 1\) thì hàm số đạt cực tiểu tại \(x = 2\).
b) Khi \(m = 1\) thì hàm số đồng biến trên khoảng \(\left( {0;2} \right)\).
c) Khi \(m = 1\) thì hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\) bằng \( - 4\).
d) Có tất cả 1 giá trị nguyên của \(m\) để hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\).
Quảng cáo
Trả lời:
a) Đ, b) S, c) S, d) S
Ta có \(y' = 3{x^2} - 6mx + 3\left( {{m^2} - 1} \right)\).
Với \(m = 1\), ta có \(y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\).
Ta có bảng biến thiên

Dựa vào bảng biến thiên,
a) Hàm số đạt cực tiểu tại \(x = 2\).
b) Hàm số nghịch biến trên khoảng \(\left( {0;2} \right)\).
c) Hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\) bằng \(2021\).
d) Ta có \(y' = 3{x^2} - 6mx + 3\left( {{m^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x_1} = m - 1\\{x_2} = m + 1\end{array} \right.\).
Để hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\) thì \({x_1} \le 0 < {x_2}\) hoặc \(0 < {x_1} < {x_2}\).
TH1: \({x_1} \le 0 < {x_2}\)\( \Leftrightarrow m - 1 \le 0 < m + 1 \Leftrightarrow - 1 < m \le 1\). Do \(m \in \mathbb{Z}\) nên \(m \in \left\{ {0;1} \right\}\).
Bảng biến thiên

TH2: \(0 < {x_1} < {x_2}\)
Bảng biến thiên của hàm số

Hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\)khi và chỉ khi \(\left\{ \begin{array}{l}m - 1 > 0\\y\left( {m + 1} \right) \le y\left( 0 \right)\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m > 1\\{\left( {m + 1} \right)^3} - 3m{\left( {m + 1} \right)^2} + 3\left( {{m^2} - 1} \right)\left( {m + 1} \right) + 2025 \le 2025\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m > 1\\{\left( {m + 1} \right)^2}\left( {m - 2} \right) \le 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m > 1\\\left[ \begin{array}{l}m \le 2\\m = - 1\end{array} \right.\end{array} \right.\)\( \Leftrightarrow 1 < m \le 2\). Do \(m \in \mathbb{Z}\) nên \(m = 2\).
Vậy có tất cả 3 giá trị của \(m\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục toạ độ \(Oxyz\) với gốc \(O\) đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục \(Ox\) hướng về phía nam, trục \(Oy\) hướng về phía đông và trục \({\rm{Oz}}\) hướng thẳng đứng lên trời (tham khảo hình vẽ), đơn vị đo lấy theo kilômét.

Chiếc khinh khí cầu thứ nhất và thứ hai ở vị trí \(A,B\). Ta có \(A\left( {\frac{5}{2};2;\frac{4}{5}} \right),B\left( { - \frac{3}{2}; - 3;\frac{3}{5}} \right)\).
Gọi \(C\) là điểm đối xứng của \(A\) qua mặt phẳng \(\left( {Oxy} \right)\), \(C\left( {\frac{5}{2};2; - \frac{4}{5}} \right)\).
Khi đó \(I = BC \cap \left( {Oxy} \right)\).
\(\overrightarrow {BC} = \left( {4;5; - \frac{7}{5}} \right)\). \(I \in \left( {Oxy} \right) \Rightarrow I\left( {x;y;0} \right) \Rightarrow \overrightarrow {BI} = \left( {x + \frac{3}{2};y + 3; - \frac{3}{5}} \right)\)
\(\overrightarrow {BC} ,\overrightarrow {BI} \) cùng phương nên \(\frac{{x + \frac{3}{2}}}{4} = \frac{{y + 3}}{5} = \frac{3}{7} \Rightarrow \left\{ \begin{array}{l}x = \frac{3}{{14}}\\y = - \frac{6}{7}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = \frac{3}{{14}}\\b = \frac{6}{7}\end{array} \right. \Rightarrow 2a + 3b = 3\).
Lời giải
Hàm số xác định và liên tục trên \(D = \left( { - \infty ;0} \right] \cup \left[ {1; + \infty } \right)\). Ta có:
\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x - \sqrt {{x^2} - x} }}{x} = \mathop {\lim }\limits_{x \to + \infty } \left( {2 - \sqrt {1 - \frac{1}{x}} } \right) = 1\).
\(b = \mathop {\lim }\limits_{x \to + \infty } \left( {f\left( x \right) - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {x - \sqrt {{x^2} - x} } \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{x}{{x + \sqrt {{x^2} - x} }} = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{1 + \sqrt {1 - \frac{1}{x}} }} = \frac{1}{2}\).
\( \Rightarrow y = x + \frac{1}{2}\) là tiệm cận xiên của đồ thị hàm số khi \(x \to + \infty \).
\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x - \sqrt {{x^2} - x} }}{x} = \mathop {\lim }\limits_{x \to - \infty } \left( {2 + \sqrt {1 - \frac{1}{x}} } \right) = 3\).
\(b = \mathop {\lim }\limits_{x \to - \infty } \left( {f\left( x \right) - 3x} \right) = - \mathop {\lim }\limits_{x \to - \infty } \left( {x + \sqrt {{x^2} - x} } \right) = - \mathop {\lim }\limits_{x \to - \infty } \frac{x}{{x - \sqrt {{x^2} - x} }} = - \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{1 + \sqrt {1 - \frac{1}{x}} }} = - \frac{1}{2}\).
\( \Rightarrow y = 3x - \frac{1}{2}\) là tiệm cận xiên của đồ thị hàm số khi \(x \to - \infty \).
Vậy đồ thị hàm số có 2 đường tiệm cận xiên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.