Cho hàm số \(y = {x^3} - 3m{x^2} + 3\left( {{m^2} - 1} \right)x + 2025\), (tham số \(m\)). Xét tính đúng sai của các khẳng định sau
a) Khi \(m = 1\) thì hàm số đạt cực tiểu tại \(x = 2\).
b) Khi \(m = 1\) thì hàm số đồng biến trên khoảng \(\left( {0;2} \right)\).
c) Khi \(m = 1\) thì hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\) bằng \( - 4\).
d) Có tất cả 1 giá trị nguyên của \(m\) để hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\).
Cho hàm số \(y = {x^3} - 3m{x^2} + 3\left( {{m^2} - 1} \right)x + 2025\), (tham số \(m\)). Xét tính đúng sai của các khẳng định sau
a) Khi \(m = 1\) thì hàm số đạt cực tiểu tại \(x = 2\).
b) Khi \(m = 1\) thì hàm số đồng biến trên khoảng \(\left( {0;2} \right)\).
c) Khi \(m = 1\) thì hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\) bằng \( - 4\).
d) Có tất cả 1 giá trị nguyên của \(m\) để hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\).
Quảng cáo
Trả lời:
a) Đ, b) S, c) S, d) S
Ta có \(y' = 3{x^2} - 6mx + 3\left( {{m^2} - 1} \right)\).
Với \(m = 1\), ta có \(y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\).
Ta có bảng biến thiên

Dựa vào bảng biến thiên,
a) Hàm số đạt cực tiểu tại \(x = 2\).
b) Hàm số nghịch biến trên khoảng \(\left( {0;2} \right)\).
c) Hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\) bằng \(2021\).
d) Ta có \(y' = 3{x^2} - 6mx + 3\left( {{m^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x_1} = m - 1\\{x_2} = m + 1\end{array} \right.\).
Để hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\) thì \({x_1} \le 0 < {x_2}\) hoặc \(0 < {x_1} < {x_2}\).
TH1: \({x_1} \le 0 < {x_2}\)\( \Leftrightarrow m - 1 \le 0 < m + 1 \Leftrightarrow - 1 < m \le 1\). Do \(m \in \mathbb{Z}\) nên \(m \in \left\{ {0;1} \right\}\).
Bảng biến thiên

TH2: \(0 < {x_1} < {x_2}\)
Bảng biến thiên của hàm số

Hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\)khi và chỉ khi \(\left\{ \begin{array}{l}m - 1 > 0\\y\left( {m + 1} \right) \le y\left( 0 \right)\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m > 1\\{\left( {m + 1} \right)^3} - 3m{\left( {m + 1} \right)^2} + 3\left( {{m^2} - 1} \right)\left( {m + 1} \right) + 2025 \le 2025\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m > 1\\{\left( {m + 1} \right)^2}\left( {m - 2} \right) \le 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m > 1\\\left[ \begin{array}{l}m \le 2\\m = - 1\end{array} \right.\end{array} \right.\)\( \Leftrightarrow 1 < m \le 2\). Do \(m \in \mathbb{Z}\) nên \(m = 2\).
Vậy có tất cả 3 giá trị của \(m\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục toạ độ \(Oxyz\) với gốc \(O\) đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục \(Ox\) hướng về phía nam, trục \(Oy\) hướng về phía đông và trục \({\rm{Oz}}\) hướng thẳng đứng lên trời (tham khảo hình vẽ), đơn vị đo lấy theo kilômét.

Chiếc khinh khí cầu thứ nhất và thứ hai ở vị trí \(A,B\). Ta có \(A\left( {\frac{5}{2};2;\frac{4}{5}} \right),B\left( { - \frac{3}{2}; - 3;\frac{3}{5}} \right)\).
Gọi \(C\) là điểm đối xứng của \(A\) qua mặt phẳng \(\left( {Oxy} \right)\), \(C\left( {\frac{5}{2};2; - \frac{4}{5}} \right)\).
Khi đó \(I = BC \cap \left( {Oxy} \right)\).
\(\overrightarrow {BC} = \left( {4;5; - \frac{7}{5}} \right)\). \(I \in \left( {Oxy} \right) \Rightarrow I\left( {x;y;0} \right) \Rightarrow \overrightarrow {BI} = \left( {x + \frac{3}{2};y + 3; - \frac{3}{5}} \right)\)
\(\overrightarrow {BC} ,\overrightarrow {BI} \) cùng phương nên \(\frac{{x + \frac{3}{2}}}{4} = \frac{{y + 3}}{5} = \frac{3}{7} \Rightarrow \left\{ \begin{array}{l}x = \frac{3}{{14}}\\y = - \frac{6}{7}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = \frac{3}{{14}}\\b = \frac{6}{7}\end{array} \right. \Rightarrow 2a + 3b = 3\).
Lời giải
Ta có \(C'\left( v \right) = - \frac{{5400}}{{{v^2}}} + \frac{3}{2} = \frac{{3\left( {v - 60} \right)\left( {v + 60} \right)}}{{2{v^2}}}\);
\(C'\left( v \right) = 0\)\( \Leftrightarrow v = - 60\)(loại) hoặc \(v = 60\) (nhận).
Trên khoảng \(\left( {0;60} \right)\), \(C'\left( v \right) < 0\) nên hàm số nghịch biến trên khoảng này.
Trên khoảng \(\left( {60;120} \right)\), \(C'\left( v \right) > 0\) nên hàm số đồng biến trên khoảng này.
Hàm số đạt cực tiểu tại \(v = 60,{C_{CT}} = C\left( {60} \right) = 180\).
Như vậy để tiết kiệm xăng nhất tài xế nên chạy xe với tốc độ trung bình là 60 km/h.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.