Câu hỏi:
12/12/2024 295Giả sử chi phí tiền xăng \(C\) (đồng) phụ thuộc tốc độ trung bình \(v\left( {{\rm{km/h}}} \right)\) theo công thức: \(C\left( v \right) = \frac{{5400}}{v} + \frac{3}{2}v\left( {0 < v \le 120} \right)\). Tài xế xe tải lái xe với tốc độ trung bình là bao nhiêu để tiết kiệm tiền xăng nhất?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(C'\left( v \right) = - \frac{{5400}}{{{v^2}}} + \frac{3}{2} = \frac{{3\left( {v - 60} \right)\left( {v + 60} \right)}}{{2{v^2}}}\);
\(C'\left( v \right) = 0\)\( \Leftrightarrow v = - 60\)(loại) hoặc \(v = 60\) (nhận).
Trên khoảng \(\left( {0;60} \right)\), \(C'\left( v \right) < 0\) nên hàm số nghịch biến trên khoảng này.
Trên khoảng \(\left( {60;120} \right)\), \(C'\left( v \right) > 0\) nên hàm số đồng biến trên khoảng này.
Hàm số đạt cực tiểu tại \(v = 60,{C_{CT}} = C\left( {60} \right) = 180\).
Như vậy để tiết kiệm xăng nhất tài xế nên chạy xe với tốc độ trung bình là 60 km/h.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hai chiếc khinh khí cầu bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm cách điểm xuất phát \(2,5{\rm{\;km}}\) về phía nam và \({\rm{2\;km}}\) về phía đông, đồng thời cách mặt đất \(0,8{\rm{\;km}}\). Chiếc thứ hai nằm cách điểm xuất phát \(1,5{\rm{\;km}}\) về phía bắc và \(3{\rm{ km}}\) về phía tây, đồng thời cách mặt đất \(0,6{\rm{\;km}}\). Người ta cần tìm một vị trí trên mặt đất để tiếp nhiên liệu cho hai khinh khí cầu sao cho tổng khoảng cách từ vị trí đó tới hai khinh khí cầu nhỏ nhất. Giả sử vị trí cần tìm cách địa điểm hai khinh khí cầu bay lên là \(a\,{\rm{km}}\) theo hướng nam và \(b\,{\rm{km}}\) theo hướng tây. Tính tổng \(2a + 3b\).
Câu 2:
Một công ty xây dựng khảo sát khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát được ghi lại ở bảng sau:
Mức giá (triệu đồng/\[{{\rm{m}}^{\rm{2}}}\]) |
[10;14) |
[14;18) |
[18;22) |
[22;26) |
[26;30) |
Số khách hàng |
54 |
78 |
120 |
45 |
12 |
Khoảng biến thiên \(R\) của mẫu số liệu ghép nhóm trên là.
Câu 3:
Cho hàm số \(f\left( x \right) = 2x - \sqrt {{x^2} - x} \). Tìm số đường tiệm cận xiên của đồ thị hàm số.
Câu 4:
Trong không gian \(Oxyz\), cho ba điểm \(A\left( {1;0;0} \right)\),\(B\left( {0;1;0} \right)\) và \(C\left( {0;0;1} \right)\). Điểm \(M\)là điểm thỏa mãn \(P = M{A^2} + 2M{B^2} - M{C^2}\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất của \(P\).
Câu 5:
Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) có bảng biến thiên như hình vẽ
b) Giá trị nhỏ nhất của hàm số là 2.
c) Tâm đối xứng của đồ thị hàm số là \(I\left( {1;2} \right)\).
d) Có 2024 số nguyên \(m\) trên \(\left[ { - 2024;2024} \right]\) để phương trình \(\left| {\frac{{ax + b}}{{cx + d}}} \right| = m\) có hai nghiệm phân biệt.
Câu 6:
Trong không gian \(Oxyz\), cho \(\Delta ABC\), biết \(A\left( { - 1;0;3} \right),B\left( {4;2;0} \right),C\left( {3;1; - 3} \right)\).
a) \(\overrightarrow {OA} = - \overrightarrow i + 3\overrightarrow k \).
b) \(G\left( {2;1;0} \right)\) là trọng tâm tam giác \(ABC\).
c) \(M\left( {a;b;c} \right)\) thỏa mãn \(\overrightarrow {AM} = 3\overrightarrow {CB} \). Khi đó \(a + b + c = - 13\).
d) \(M\left( {a;b;c} \right) \in Ox\) sao cho \(BM\) vuông góc với đường thẳng \(AC\). Khi đó \(4{a^2} + {b^2} + {c^2} = 162.\)
Câu 7:
Cho hình hộp \[ABCD.A'B'C'D'\]. Vectơ nào dưới đây cùng phương với vectơ \[\overrightarrow {AB} \]?
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
về câu hỏi!