Câu hỏi:

14/12/2024 118

Ông An xây dựng một sân bóng đá mini hình chữ nhật có chiều rộng 30 m và chiều dài 50 m. Để giảm bởi chi phí cho việc trồng cỏ nhân tạo, ông An chia sân bóng ra làm hai phần (tô đen và không tô đen) như hình vẽ. Phần tô đen gồm hai phần diện tích bằng nhau và đường cong \(AIB\) là một parabol đỉnh I được trồng cỏ nhân tạo với giá 130000 đồng/m2 và phần còn lại được trồng với giá 90000 đồng/m2. Hỏi ông An phải trả bao nhiêu tiền (triệu đồng) để trồng cỏ nhân tạo cho sân bóng đá.

Ông An xây dựng một sân bóng đá mini hình chữ nhật có chiều rộng 30 m và chiều dài 50 m. Để giảm bởi chi (ảnh 1)

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn hệ trục tọa độ sao O là trung điểm của \(AB\), \(I \in Oy\)\(I\left( {0;10} \right),A\left( { - 15;0} \right),B\left( {15;0} \right)\).

Giả sử \(\left( P \right):y = a{x^2} + bx + c\).

\(\left( P \right)\) đi qua \(I\left( {0;10} \right),A\left( { - 15;0} \right),B\left( {15;0} \right)\) nên ta có hệ

\(\left\{ \begin{array}{l}225a + 15b + c = 0\\225a - 15b + c = 0\\c = 10\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{2}{{45}}\\b = 0\\c = 10\end{array} \right.\). Do đó \(\left( P \right):y = \frac{{ - 2}}{{45}}{x^2} + 10\).

Do đó diện tích phần tô đen là \({S_1} = 2\int\limits_{ - 15}^{15} {\left( { - \frac{2}{{45}}{x^2} + 10} \right)dx} = 400\) m2.

Diện tích phần không tô đen là \({S_2} = 30.50 - {S_1} = 1100\) m2.

Số tiền ông An phải trả là: \(400.130000 + 1100.90000 = 151000000\) đồng = 151 triệu đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian \(t\left( s \right)\)\(a\left( t \right) = 2t - 7\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\). Biết vận tốc ban đầu bằng \(6{\rm{m/s}}\).

a) Vận tốc tức thời của chất điểm tại thời điểm \(t\left( s \right)\) xác định bởi \(v\left( t \right) = {t^2} - 7t + 10\).

b) Tại thời điểm \(t = 7\left( {\rm{s}} \right)\), vận tốc của chất điểm là \(6\left( {{\rm{m/s}}} \right)\).

c) Độ dịch chuyển của vật trong khoảng thời gian \(1 \le t \le 7\)\(18{\rm{m}}\).

d) Trong 8 giây đầu tiên, thời điểm chất điểm xa nhất về phía bên phải là \(t = 7\left( {\rm{s}} \right)\).

Xem đáp án » 14/12/2024 8,613

Câu 2:

Trong không gian \(Oxyz,\) cho mặt phẳng \((\alpha ):x + by + cz + d = 0\) vuông góc với mặt phẳng \((\beta ):x + 2y + 3z + 4 = 0\) và chứa giao tuyến của hai mặt phẳng \((P):x + 3y + z - 7 = 0,\) \((Q):x - y + z + 1 = 0.\) Khi đó \(d\) bằng bao nhiêu?

Xem đáp án » 14/12/2024 1,164

Câu 3:

Cho hàm số \(y = f\left( x \right)\) liên tục và có đồ thị như hình vẽ sau. Biết diện tích các miền \(A,B,C\) lần lượt là \({S_A} = 2,35,{S_B} = 4,3,{S_C} = 8,35\).

Cho hàm số \(y = f( x ) liên tục và có đồ thị như hình vẽ sau. Biết diện tích các miền (ảnh 1)

a) \(\int\limits_{ - 3}^2 {f\left( x \right)dx} = 6,65\).

b) \(\int\limits_{ - 1}^5 {\left| {f\left( x \right)} \right|dx = 12,65} \).

c) \(\int\limits_{ - 3}^5 {\left[ {f\left( x \right) + 1} \right]dx} = 7,4\).

d) \(\int\limits_{ - 1}^5 {\left[ {2x + f\left( x \right)} \right]dx} = 16,05\).

Xem đáp án » 14/12/2024 642

Câu 4:

Trong không gian với hệ trục tọa độ \(Oxyz\) cho điểm \(A\left( {0; - 1;1} \right)\) và hai vectơ \(\overrightarrow u = \left( { - 1;0;2} \right)\)\(\overrightarrow v = \left( {2;1;0} \right)\).

a) Mặt phẳng \(\left( P \right)\) đi qua \(A\) nhận \(\overrightarrow u \) làm vectơ pháp tuyến có phương trình là \( - x + 2z - 2 = 0.\)

b) Mặt phẳng \(\left( Q \right)\) đi qua \(A\) và nhận \(\overrightarrow u ,\overrightarrow v \) làm vặp vectơ chỉ phương có phương trình \(2x - 4y - z - 3 = 0\).

c) Mặt phẳng đi qua ba điểm \(A,B\left( { - 3;1;2} \right),C\left( {1;0;1} \right)\) có phương trình \(x - y + 5z - 6 = 0\).

d) Gọi \(M\) là giao điểm của \(\left( P \right)\) và trục \(Ox\), \(N\)là giao điểm của \(\left( Q \right)\) và trục \(Oz\). Mặt phẳng đi qua ba điểm \(A,M,N\) có phương trình là \(3x + 8y + 2z + 6 = 0\).

Xem đáp án » 14/12/2024 612

Câu 5:

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\). Gọi \(F\left( x \right),G\left( x \right)\) là hai nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\) thỏa mãn \(F\left( 2 \right) + G\left( 2 \right) = 8\)\(F\left( 0 \right) + G\left( 0 \right) = - 2\). Khi đó \(\int\limits_0^{16} f \left( {\frac{x}{8}} \right){\rm{d}}x\) bằng bao nhiêu?

Xem đáp án » 14/12/2024 314

Câu 6:

Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):x - z + 10 = 0\) và điểm \(A\left( {1;0;0} \right)\). Mặt phẳng \(\left( \alpha \right)\) đi qua \(A\), vuông góc với \(\left( P \right)\), cách gốc tọa độ \(O\) một khoảng bằng \(\frac{2}{3}\) và cắt các tia \(Oy,Oz\) lần lượt tại các điểm \(B,C\) không trùng \(O\). Thể tích khối tứ diện \(OABC\) bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?

Xem đáp án » 14/12/2024 260

Câu 7:

Diện tích hình phẳng giới hạn bởi các đường \[y = {x^2}\]\[y = 4x - 3\]

Xem đáp án » 14/12/2024 245

Bình luận


Bình luận