Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):x - z + 10 = 0\) và điểm \(A\left( {1;0;0} \right)\). Mặt phẳng \(\left( \alpha \right)\) đi qua \(A\), vuông góc với \(\left( P \right)\), cách gốc tọa độ \(O\) một khoảng bằng \(\frac{2}{3}\) và cắt các tia \(Oy,Oz\) lần lượt tại các điểm \(B,C\) không trùng \(O\). Thể tích khối tứ diện \(OABC\) bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):x - z + 10 = 0\) và điểm \(A\left( {1;0;0} \right)\). Mặt phẳng \(\left( \alpha \right)\) đi qua \(A\), vuông góc với \(\left( P \right)\), cách gốc tọa độ \(O\) một khoảng bằng \(\frac{2}{3}\) và cắt các tia \(Oy,Oz\) lần lượt tại các điểm \(B,C\) không trùng \(O\). Thể tích khối tứ diện \(OABC\) bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
Quảng cáo
Trả lời:

Giả sử \(B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) với \(b > 0,c > 0\).
Do đó phương trình mặt phẳng \(\left( \alpha \right)\) là \(\frac{x}{1} + \frac{y}{b} + \frac{z}{c} = 1\).
Ta có \(\frac{1}{{{d^2}\left( {O,\left( \alpha \right)} \right)}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{1}{{{1^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{9}{4}\)\( \Leftrightarrow \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{5}{4}\).
Vì \(\left( P \right) \bot \left( \alpha \right)\) nên \(1 - \frac{1}{c} = 0 \Leftrightarrow c = 1\). Suy ra \(b = 2\).
Vậy \(A\left( {1;0;0} \right),B\left( {0;2;0} \right),C\left( {0;0;1} \right)\).
Do đó \({V_{OABC}} = \frac{1}{6}OA.OB.OC = \frac{1}{6}.1.2.1 = \frac{1}{3} \approx 0,33\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) S, b) Đ, c) S, d) S
a) Ta có \(v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( {2t - 7} \right)dt} = {t^2} - 7t + C\).
Vì \(v\left( 0 \right) = 6 \Rightarrow C = 6\). Do đó \(v\left( t \right) = {t^2} - 7t + 6\).
b) \(v\left( 7 \right) = {7^2} - 7.7 + 6 = 6\left( {{\rm{m/s}}} \right)\).
c) Có \(s = \int\limits_1^7 {v\left( t \right)dt} = \int\limits_1^7 {\left( {{t^2} - 7t + 6} \right)dt} = \left. {\left( {\frac{{{t^3}}}{3} - \frac{{7{t^2}}}{2} + 6t} \right)} \right|_1^7 = - 18\).
d) Tọa độ của chất điểm tại thời điểm \(t\) là \(x\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {{t^2} - 7t + 6} \right)dt} = \frac{{{t^3}}}{3} - \frac{{7{t^2}}}{2} + 6t + C\)
Ta cần tìm giá trị lớn nhất của \(x\left( t \right)\) với \(t \in \left[ {0;8} \right]\).
Ta có \(x'\left( t \right) = v\left( t \right) = 0\) khi \(t = 1\) hoặc \(t = 6\).
Lại có \(x\left( 0 \right) = C,x\left( 1 \right) = \frac{{17}}{6} + C,x\left( 6 \right) = - 18 + C,x\left( 8 \right) = - \frac{{16}}{3} + C\).
Vậy giá trị lớn nhất của \(x\left( t \right)\) với \(t \in \left[ {0;8} \right]\) đạt được khi \(t = 1\).
Lời giải
Ta có vectơ pháp tuyến của \[\left( \beta \right),\left( P \right),\left( Q \right)\] lần lượt là \[\overrightarrow {{n_1}} \left( {1;2;3} \right),\,\overrightarrow {{n_2}} \left( {1;3;1} \right),\,\overrightarrow {{n_3}} \left( {1; - 1;1} \right)\].
Khi đó \[\overrightarrow {{n_\alpha }} = \left[ {\overrightarrow {{n_1}} ,\left[ {\overrightarrow {{n_2}} ,\overrightarrow {{n_3}} } \right]} \right] = \left( { - 8;16; - 8} \right) = - 8\left( {1; - 2;1} \right)\].
Gọi \[A\left( {x;y;z} \right) \in d\] là giao tuyến của \[\left( P \right)\] và \[\left( Q \right)\], khi đó toạ độ điểm \[A\] thoả mãn hệ \[\left\{ \begin{array}{l}x + 3y + z - 7 = 0\\x - y + z + 1 = 0\end{array} \right.\]. Cho \[x = 0\] ta có \[\left\{ \begin{array}{l}3y + z - 7 = 0\\ - y + z + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2\\z = 1\end{array} \right.\], khi đó \[A\left( {0;2;1} \right)\].
Do \[\left( \alpha \right)\] chứa giao tuyến của \[\left( P \right)\] và \[\left( Q \right)\] nên \[\left( \alpha \right)\] đi qua \[A\left( {0;2;1} \right)\].
Phương trình \[\left( \alpha \right):x - 2\left( {y - 2} \right) + z - 1 = 0 \Leftrightarrow x - 2y + z + 3 = 0\]. Vậy \[d = 3\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.