Câu hỏi:

14/12/2024 2,687

Trong không gian với hệ trục tọa độ \(Oxyz\) cho điểm \(A\left( {0; - 1;1} \right)\) và hai vectơ \(\overrightarrow u = \left( { - 1;0;2} \right)\)\(\overrightarrow v = \left( {2;1;0} \right)\).

a) Mặt phẳng \(\left( P \right)\) đi qua \(A\) nhận \(\overrightarrow u \) làm vectơ pháp tuyến có phương trình là \( - x + 2z - 2 = 0.\)

b) Mặt phẳng \(\left( Q \right)\) đi qua \(A\) và nhận \(\overrightarrow u ,\overrightarrow v \) làm vặp vectơ chỉ phương có phương trình \(2x - 4y - z - 3 = 0\).

c) Mặt phẳng đi qua ba điểm \(A,B\left( { - 3;1;2} \right),C\left( {1;0;1} \right)\) có phương trình \(x - y + 5z - 6 = 0\).

d) Gọi \(M\) là giao điểm của \(\left( P \right)\) và trục \(Ox\), \(N\)là giao điểm của \(\left( Q \right)\) và trục \(Oz\). Mặt phẳng đi qua ba điểm \(A,M,N\) có phương trình là \(3x + 8y + 2z + 6 = 0\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đ, b) S, c) Đ, d) S

a) Mặt phẳng \(\left( P \right)\) đi qua \(A\) nhận \(\overrightarrow u \) làm vectơ pháp tuyến có phương trình là

\( - x + 2\left( {z - 1} \right) = 0 \Leftrightarrow - x + 2z - 2 = 0\).

b) Có \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( { - 2;4; - 1} \right)\).

Mặt phẳng \(\left( Q \right)\) có phương trình là \( - 2x + 4\left( {y + 1} \right) - \left( {z - 1} \right) = 0\)\( \Leftrightarrow - 2x + 4y - z + 5 = 0\).

c) Có \(\overrightarrow {AB} = \left( { - 3;2;1} \right),\overrightarrow {AC} = \left( {1;1;0} \right),\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 1;1; - 5} \right)\).

Mặt phẳng \(\left( {ABC} \right)\) có phương trình là

\( - x + 1.\left( {y + 1} \right) - 5\left( {z - 1} \right) = 0\)\( \Leftrightarrow - x + y - 5z + 6 = 0\)\( \Leftrightarrow x - y + 5z - 6 = 0\).

d) \(M\) là giao điểm của \(\left( P \right)\) và trục \(Ox\) nên \(M\left( { - 2;0;0} \right)\),

\(N\)là giao điểm của \(\left( Q \right)\) và trục \(Oz\) nên \(N\left( {0;0;5} \right)\).

\(\overrightarrow {AM} = \left( { - 2;1; - 1} \right),\overrightarrow {AN} = \left( {0;1;4} \right),\left[ {\overrightarrow {AM} ,\overrightarrow {AN} } \right] = \left( {5;8; - 2} \right)\).

Mặt phẳng \(\left( {AMN} \right)\) có phương trình là \(5x + 8\left( {y + 1} \right) - 2\left( {z - 1} \right) = 0\)\( \Leftrightarrow 5x + 8y - 2z + 10 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) S, b) Đ, c) S, d) S

a) Ta có \(v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( {2t - 7} \right)dt} = {t^2} - 7t + C\).

\(v\left( 0 \right) = 6 \Rightarrow C = 6\). Do đó \(v\left( t \right) = {t^2} - 7t + 6\).

b) \(v\left( 7 \right) = {7^2} - 7.7 + 6 = 6\left( {{\rm{m/s}}} \right)\).

c) Có \(s = \int\limits_1^7 {v\left( t \right)dt}  = \int\limits_1^7 {\left( {{t^2} - 7t + 6} \right)dt} = \left. {\left( {\frac{{{t^3}}}{3} - \frac{{7{t^2}}}{2} + 6t} \right)} \right|_1^7 = - 18\).

d) Tọa độ của chất điểm tại thời điểm \(t\)\(x\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {{t^2} - 7t + 6} \right)dt} = \frac{{{t^3}}}{3} - \frac{{7{t^2}}}{2} + 6t + C\)

Ta cần tìm giá trị lớn nhất của \(x\left( t \right)\) với \(t \in \left[ {0;8} \right]\).

Ta có \(x'\left( t \right) = v\left( t \right) = 0\) khi \(t = 1\) hoặc \(t = 6\).

Lại có \(x\left( 0 \right) = C,x\left( 1 \right) = \frac{{17}}{6} + C,x\left( 6 \right) = - 18 + C,x\left( 8 \right) = - \frac{{16}}{3} + C\).

Vậy giá trị lớn nhất của \(x\left( t \right)\) với \(t \in \left[ {0;8} \right]\) đạt được khi \(t = 1\).

Lời giải

Ta có vectơ pháp tuyến của \[\left( \beta \right),\left( P \right),\left( Q \right)\] lần lượt là \[\overrightarrow {{n_1}} \left( {1;2;3} \right),\,\overrightarrow {{n_2}} \left( {1;3;1} \right),\,\overrightarrow {{n_3}} \left( {1; - 1;1} \right)\].

Khi đó \[\overrightarrow {{n_\alpha }} = \left[ {\overrightarrow {{n_1}} ,\left[ {\overrightarrow {{n_2}} ,\overrightarrow {{n_3}} } \right]} \right] = \left( { - 8;16; - 8} \right) = - 8\left( {1; - 2;1} \right)\].

Gọi \[A\left( {x;y;z} \right) \in d\] là giao tuyến của \[\left( P \right)\]\[\left( Q \right)\], khi đó toạ độ điểm \[A\] thoả mãn hệ \[\left\{ \begin{array}{l}x + 3y + z - 7 = 0\\x - y + z + 1 = 0\end{array} \right.\]. Cho \[x = 0\] ta có \[\left\{ \begin{array}{l}3y + z - 7 = 0\\ - y + z + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2\\z = 1\end{array} \right.\], khi đó \[A\left( {0;2;1} \right)\].

Do \[\left( \alpha \right)\] chứa giao tuyến của \[\left( P \right)\]\[\left( Q \right)\] nên \[\left( \alpha \right)\] đi qua \[A\left( {0;2;1} \right)\].

Phương trình \[\left( \alpha \right):x - 2\left( {y - 2} \right) + z - 1 = 0 \Leftrightarrow x - 2y + z + 3 = 0\]. Vậy \[d = 3\].