Câu hỏi:
14/12/2024 1,618
Biết hàm số \(F\left( x \right) = \left( {a{x^2} + bx + c} \right)\sqrt {2x - 3} \) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{20{x^2} - 30x + 7}}{{\sqrt {2x - 3} }}\) trên khoảng \(\left( {\frac{3}{2}; + \infty } \right)\). Tính \(P = abc\).
Biết hàm số \(F\left( x \right) = \left( {a{x^2} + bx + c} \right)\sqrt {2x - 3} \) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{20{x^2} - 30x + 7}}{{\sqrt {2x - 3} }}\) trên khoảng \(\left( {\frac{3}{2}; + \infty } \right)\). Tính \(P = abc\).
Quảng cáo
Trả lời:
Có \(F'\left( x \right) = \left( {2ax + b} \right)\sqrt {2x - 3} + \frac{{a{x^2} + bx + c}}{{\sqrt {2x - 3} }}\)\( = \frac{{\left( {2ax + b} \right)\left( {2x - 3} \right) + a{x^2} + bx + c}}{{\sqrt {2x - 3} }}\)
\( = \frac{{5a{x^2} + \left( {3b - 6a} \right)x - 3b + c}}{{\sqrt {2x - 3} }}\).
Vì \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) nên ta có:
\(\left\{ \begin{array}{l}5a = 20\\3b - 6a = - 30\\ - 3b + c = 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = - 2\\c = 1\end{array} \right.\). Do đó \(P = abc = 4.\left( { - 2} \right).1 = - 8\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ với \(O\) là trung điểm của \(MN\), trục hoành trùng với đường thẳng \(MN\).
Giả sử \(\left( P \right):y = a{x^2} + bx + c\left( {a < 0} \right)\).
Vì \(\left( P \right)\) đi qua \(I\left( {0;6} \right),C\left( {6;0} \right),D\left( { - 6;0} \right)\).
Do đó ta có hệ \(\left\{ \begin{array}{l}36a + 6b + c = 0\\36a - 6b + c = 0\\c = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{ - 1}}{6}\\b = 0\\c = 6\end{array} \right.\).
Do đó \(\left( P \right):y = - \frac{1}{6}{x^2} + 6\).
Diện tích cần làm là \(S = \int\limits_{ - 2}^2 {\left| { - \frac{1}{6}{x^2} + 6} \right|dx} = \frac{{208}}{9}\).
Số tiền cần dùng là:\(\frac{{208}}{9}.900000 = 20800000\) đồng = 20,8 triệu đồng.
Lời giải
Đáp án đúng là: D
Ta có \(AH = d\left( {A,\left( P \right)} \right) = \frac{{\left| {2.1 - \left( { - 2} \right) - 2.3 + 5} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{3}{3} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.