Câu hỏi:

14/12/2024 1,802

Giả sử một viên đạn được bắn lên từ mặt đất theo phương thẳng đứng với vận tốc ban đầu là \(196{\rm{m/s}}\) và gia tốc trọng trường là \(9,8{\rm{m/}}{{\rm{s}}^{\rm{2}}}\)(bỏ qua sức cản của không khí). Quãng đường viên đạn đi được từ lúc bắn lên cho tới khi rơi xuống đất là bao nhiêu kilômét?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vận tốc của viên đạn là \(v\left( t \right) = \int { - 9,8dt} = - 9,8t + C\).

\(v\left( 0 \right) = 196\) nên \(C = 196\). Do đó \(v\left( t \right) = - 9,8t + 196\).

Khi viên đạn đạt độ cao lớn nhất thì viên đạn có vận tốc bằng 0.

Suy ra  \( - 9,8t + 196 = 0 \Leftrightarrow t = 20\).

Quãng đường viên đạn đi từ mặt đất đến vị trí cao nhất là

\(s\left( t \right) = \int\limits_0^{20} {\left( { - 9,8t + 196} \right)dt} = 1960\)(m)

Quãng đường viên đạn đi được từ lúc bắn lên cho tới khi rơi xuống đất là

\(2.1960 = 3920\) m \( = 3,92\) km.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn hệ trục tọa độ với \(O\) là trung điểm của \(MN\), trục hoành trùng với đường thẳng \(MN\).

Giả sử \(\left( P \right):y = a{x^2} + bx + c\left( {a < 0} \right)\).

\(\left( P \right)\) đi qua \(I\left( {0;6} \right),C\left( {6;0} \right),D\left( { - 6;0} \right)\).

Do đó ta có hệ \(\left\{ \begin{array}{l}36a + 6b + c = 0\\36a - 6b + c = 0\\c = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{ - 1}}{6}\\b = 0\\c = 6\end{array} \right.\).

Do đó \(\left( P \right):y = - \frac{1}{6}{x^2} + 6\).

Diện tích cần làm là \(S = \int\limits_{ - 2}^2 {\left| { - \frac{1}{6}{x^2} + 6} \right|dx} = \frac{{208}}{9}\).

Số tiền cần dùng là:\(\frac{{208}}{9}.900000 = 20800000\) đồng = 20,8 triệu đồng.

Câu 2

Lời giải

Đáp án đúng là: D

Ta có \(AH = d\left( {A,\left( P \right)} \right) = \frac{{\left| {2.1 - \left( { - 2} \right) - 2.3 + 5} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{3}{3} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP