Câu hỏi:
16/12/2024 10,655Gọi \(D\) là hình phẳng giới hạn bởi các đồ thị hàm số \(y = \sqrt x ,y = \frac{1}{2}\sqrt x \) và hai đường thẳng \(x = 0,x = 4\).
a) Gọi \({V_1}\) là thể tích khối tròn xoay được tạo khi quay hình phẳng giới hạn bởi các đường \(y = 0,\)\(y = \sqrt x \), \(x = 0,x = 4\) quanh trục \(Ox\). Khi đó \({V_1} = \pi \int\limits_0^4 {x{\rm{d}}x} .\).
b) Gọi \({V_2}\) là thể tích khối tròn xoay được tạo khi quay hình phẳng giới hạn bởi các đường \(y = 0,\)\(y = \frac{1}{2}\sqrt x \), \(x = 0,x = 4\) quanh trục \(Ox\). Khi đó \({V_2} = \pi \int\limits_0^4 {\frac{1}{4}x{\rm{d}}x} .\)
c) Giá trị của biểu thức \({V_1} - {V_2}\) bằng \(12\pi \).
d) Một vật thể A có hình dạng được tạo thành khi quay hình phẳng \(D\)quanh trục \(Ox\)( đơn vị trên hai trục tính theo centimét). Thể tích của vật thể đó (làm tròn đến hàng phần mười theo đơn vị centimét khối) là \(37,7{\rm{c}}{{\rm{m}}^3}\).
Quảng cáo
Trả lời:
a) Đ, b) Đ, c) S, d) S
Ta có: \({V_1} = \pi \int\limits_0^4 {{{(\sqrt x )}^2}} \;{\rm{d}}x = \pi \int\limits_0^4 x \;{\rm{d}}x = 8\pi \); \({V_2} = \pi \int\limits_0^4 {{{\left( {\frac{1}{2}\sqrt x } \right)}^2}} \;{\rm{d}}x = \pi \int\limits_0^4 {\frac{1}{4}x} \;{\rm{d}}x = 2\pi \).
Khi đó, \({V_1} - {V_2} = 6\pi \). Vậy thể tích của vật thể \({\rm{A}}\) là \(6\pi \approx 18,8\left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Không mất tính tổng quát, ta giả sử \(M,N,P\)lần lượt là hình chiếu vuông góc của \(A\left( {2; - 3;1} \right)\) lên các mặt phẳng tọa độ \(\left( {Oxy} \right),\left( {Oxz} \right),\left( {Oyz} \right)\).
Khi đó, \(M\left( {2; - 3;0} \right),N\left( {2;0;1} \right),P\left( {0; - 3;1} \right)\).
\(\overrightarrow {MN} = \left( {0;3;1} \right),\overrightarrow {MP} = \left( { - 2;0;1} \right)\).
\(\left( {MNP} \right)\) có một vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {3; - 2;6} \right)\).
Mặt khác, \(\left( {MNP} \right)\) đi qua \(M\left( {2; - 3;0} \right)\) nên có phương trình là:
\(3\left( {x - 2} \right) - 2\left( {y + 3} \right) + 6\left( {z - 0} \right) = 0\) hay \(3x - 2y + 6z - 12 = 0\).
Suy ra \(a = 3;b = - 2;c = 6\). Do đó \(a + b + c = 7\).
Lời giải
Quãng đường anh nhìn thấy chướng ngại vật trước khi hãm phanh là \({S_1} = 2{v_0}\left( {\rm{m}} \right)\).
Vận tốc kể từ khi hãm phanh là \(v\left( t \right) = \int { - 6dt} = - 6t + C\).
Mà \(v\left( 0 \right) = {v_0}\) nên \(v\left( t \right) = - 6t + {v_0}\).
Quãng đường anh đi được trong 3 giây đầu tiên kể từ lúc hãm phanh là
\({S_2} = \int\limits_0^3 {\left( { - 6t + {v_0}} \right)} dt = \left. {\left( { - 3{t^2} + {v_0}t} \right)} \right|_0^3 = - 27 + 3{v_0}\).
Vì \({S_1} + {S_2} = 35,5\) nên \(5{v_0} - 27 = 35,5 \Leftrightarrow {v_0} = 12,5\;{\rm{m/s}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận