Câu hỏi:
16/12/2024 2,123
Hằng ngày anh An đi làm bằng xe máy trên cùng một cung đường từ nhà đến cơ quan mất 15 phút. Hôm nay khi đang di chuyển trên đường với vận tốc \({v_0}\) thì bất chợt anh gặp một chướng ngại vật nên anh đã hãm phanh và chuyển động chậm dần đều với gia tốc \(a = - 6{\rm{m/}}{{\rm{s}}^{\rm{2}}}\). Biết rằng tổng quãng đường từ lúc anh nhìn thấy chướng ngại vật (trước khi hãm phanh 2 giây) và quãng đường anh đã đi được trong 3 giây đầu tiên kể từ lúc hãm phanh là 35,5 m. Tính \({v_0}\left( {{\rm{m/s}}} \right)\).
Hằng ngày anh An đi làm bằng xe máy trên cùng một cung đường từ nhà đến cơ quan mất 15 phút. Hôm nay khi đang di chuyển trên đường với vận tốc \({v_0}\) thì bất chợt anh gặp một chướng ngại vật nên anh đã hãm phanh và chuyển động chậm dần đều với gia tốc \(a = - 6{\rm{m/}}{{\rm{s}}^{\rm{2}}}\). Biết rằng tổng quãng đường từ lúc anh nhìn thấy chướng ngại vật (trước khi hãm phanh 2 giây) và quãng đường anh đã đi được trong 3 giây đầu tiên kể từ lúc hãm phanh là 35,5 m. Tính \({v_0}\left( {{\rm{m/s}}} \right)\).
Quảng cáo
Trả lời:
Quãng đường anh nhìn thấy chướng ngại vật trước khi hãm phanh là \({S_1} = 2{v_0}\left( {\rm{m}} \right)\).
Vận tốc kể từ khi hãm phanh là \(v\left( t \right) = \int { - 6dt} = - 6t + C\).
Mà \(v\left( 0 \right) = {v_0}\) nên \(v\left( t \right) = - 6t + {v_0}\).
Quãng đường anh đi được trong 3 giây đầu tiên kể từ lúc hãm phanh là
\({S_2} = \int\limits_0^3 {\left( { - 6t + {v_0}} \right)} dt = \left. {\left( { - 3{t^2} + {v_0}t} \right)} \right|_0^3 = - 27 + 3{v_0}\).
Vì \({S_1} + {S_2} = 35,5\) nên \(5{v_0} - 27 = 35,5 \Leftrightarrow {v_0} = 12,5\;{\rm{m/s}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) Đ, c) S, d) S
Ta có: \({V_1} = \pi \int\limits_0^4 {{{(\sqrt x )}^2}} \;{\rm{d}}x = \pi \int\limits_0^4 x \;{\rm{d}}x = 8\pi \); \({V_2} = \pi \int\limits_0^4 {{{\left( {\frac{1}{2}\sqrt x } \right)}^2}} \;{\rm{d}}x = \pi \int\limits_0^4 {\frac{1}{4}x} \;{\rm{d}}x = 2\pi \).
Khi đó, \({V_1} - {V_2} = 6\pi \). Vậy thể tích của vật thể \({\rm{A}}\) là \(6\pi \approx 18,8\left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\).
Lời giải
Không mất tính tổng quát, ta giả sử \(M,N,P\)lần lượt là hình chiếu vuông góc của \(A\left( {2; - 3;1} \right)\) lên các mặt phẳng tọa độ \(\left( {Oxy} \right),\left( {Oxz} \right),\left( {Oyz} \right)\).
Khi đó, \(M\left( {2; - 3;0} \right),N\left( {2;0;1} \right),P\left( {0; - 3;1} \right)\).
\(\overrightarrow {MN} = \left( {0;3;1} \right),\overrightarrow {MP} = \left( { - 2;0;1} \right)\).
\(\left( {MNP} \right)\) có một vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {3; - 2;6} \right)\).
Mặt khác, \(\left( {MNP} \right)\) đi qua \(M\left( {2; - 3;0} \right)\) nên có phương trình là:
\(3\left( {x - 2} \right) - 2\left( {y + 3} \right) + 6\left( {z - 0} \right) = 0\) hay \(3x - 2y + 6z - 12 = 0\).
Suy ra \(a = 3;b = - 2;c = 6\). Do đó \(a + b + c = 7\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.