Cho hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\) liên tục và không âm trên đoạn \(\left[ {1;3} \right]\), trục \(Ox\) và hai đường thẳng \(x = 1;x = 3\) quay quanh trục \(Ox\), ta được khối tròn xoay. Thể tích của khối tròn xoay này được tính theo công thức nào dưới đây?
Cho hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\) liên tục và không âm trên đoạn \(\left[ {1;3} \right]\), trục \(Ox\) và hai đường thẳng \(x = 1;x = 3\) quay quanh trục \(Ox\), ta được khối tròn xoay. Thể tích của khối tròn xoay này được tính theo công thức nào dưới đây?
Quảng cáo
Trả lời:

Đáp án đúng là: D
\(V = \pi \int\limits_1^3 {{{\left[ {f\left( x \right)} \right]}^2}dx} \).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét ba điểm \(A\left( {1;1;10} \right)\), \(B\left( {4;3;1} \right)\) và \(C\left( {3;2;5} \right)\). Khi đó \(\overrightarrow {AB} = \left( {3;2; - 9} \right)\) và \(\overrightarrow {AC} = \left( {2;1; - 5} \right)\).
Suy ra \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 9}\\1&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 9}&3\\{ - 5}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&2\\2&1\end{array}} \right|} \right) = \left( { - 1; - 3; - 1} \right)\).
Ta có \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 1; - 3; - 1} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {ABC} \right)\) nên phương trình mặt phẳng \(\left( {ABC} \right)\) là
\(\left( { - 1} \right).\left( {x - 1} \right) + \left( { - 3} \right).\left( {y - 1} \right) + \left( { - 1} \right).\left( {z - 10} \right) = 0 \Leftrightarrow x + 3y + z - 14 = 0\).
Suy ra \(m = 3\), \(n = 1\), \(p = - 14\). Vậy \(m + n + p = - 10\).
Lời giải
Dựng hệ trục tọa độ \(Oxy\) như hình vẽ

Phần phía trên cổng \(\left( P \right)\) có dạng \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\).
Vì \(\left( P \right)\) đi qua điểm \(I\left( {0;2,5} \right),A\left( { - 3;0} \right),B\left( {3;0} \right)\) nên ta có hệ
\(\left\{ \begin{array}{l}9a + 3b + c = 0\\9a - 3b + c = 0\\c = 2,5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{5}{{18}}\\b = 0\\c = 2,5\end{array} \right.\).
Do vậy \(\left( P \right):y = - \frac{5}{{18}}{x^2} + 2,5\).
Diện tích phần phía trên cổng là \({S_1} = \int\limits_{ - 3}^3 {\left| { - \frac{5}{{18}}{x^2} + 2,5} \right|dx = 10} \left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Diện tích phần phía dưới là \({S_2} = 4.6 = 24\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Số tiền phải trả là \(10.1200000 + 24.1000000 = 36000000\) đồng = 36 triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.