Câu hỏi:

17/12/2024 66

Giải hệ phương trình \[\left\{ \begin{array}{l}\frac{x}{2} = \frac{y}{3}\\\frac{{x + 8}}{{y + 4}} = \frac{9}{4}\end{array} \right.\] ta được cặp nghiệm (x; y) là

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Ta có hệ phương trình \[\left\{ \begin{array}{l}\frac{x}{2} = \frac{y}{3}\\\frac{{x + 8}}{{y + 4}} = \frac{9}{4}\end{array} \right.\] hay \[\left\{ \begin{array}{l}3x - 2y = 0\\4\left( {x + 8} \right) - 9\left( {y + 4} \right) = 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}3x - 2y = 0\\4x - 9y = 4\end{array} \right.\].

Từ phương trình 3x – 2y = 0 ta có y = \[\frac{3}{2}\]x.

Thế y = \[\frac{3}{2}\]x vào phương trình 4x – 9y = 4 ta được 4x – 9. \[\frac{3}{2}\]x = 4

hay \[ - \frac{{19}}{2}\]x = 4 khi x = \[ - \frac{8}{{19}}\].

Với x = \[ - \frac{8}{{19}}\] ta được y = \[\frac{3}{2}\].\[\left( { - \frac{8}{{19}}} \right)\] = \[ - \frac{{12}}{{19}}\].

Vậy nghiệm của hệ phương trình đó là \[\left( { - \frac{8}{{19}}; - \frac{{12}}{{19}}} \right)\].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nghiệm của hệ phương \(\left\{ \begin{array}{l}x - 3y = 2\\ - 2x + 5y = 1\end{array} \right.\) là

Xem đáp án » 17/12/2024 109

Câu 2:

Phép toán thích hợp điền vào chỗ trống ở Bước 2 là:

Xem đáp án » 17/12/2024 106

Câu 3:

Nghiệm của hệ phương trình \(\left\{ \begin{array}{l} - 2x + 4y = 5\\ - x + 2y = 4{\rm{ }}\end{array} \right.\) là

Xem đáp án » 17/12/2024 80

Câu 4:

Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x - y = 4x + 3\\x + 5y = 15 + 2y\end{array} \right.\) là:

Xem đáp án » 17/12/2024 74

Câu 5:

Giải hệ phương trình \(\left\{ \begin{array}{l}2x - y = 3\\x + 2y = 4{\rm{ }}\end{array} \right.\) bằng phương pháp thế.

Xem đáp án » 17/12/2024 68

Câu 6:

Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\left( {x + 1} \right)\left( {y - 1} \right) = xy - 1\\\left( {x - 3} \right)\left( {y - 3} \right) = xy - 3\end{array} \right.\) là:

Xem đáp án » 17/12/2024 67