Câu hỏi:

20/12/2024 47

Tính tích phân của: \[I = \int {\frac{{x + 1}}{{\sqrt x }}dx} \]

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Viết ma trận của dạng toàn phương Q trong cơ sở chính tắc: \[Q({x_1},{x_2},{x_3}) = 3{x_1}^2 + 2{x_2}^2 - {x_3}^2 + 2{x_1}{x_2} - 4{x_1}{x_3} + 2{x_2}{x_3}\]

Xem đáp án » 20/12/2024 34

Câu 2:

Tính tích phân của: \[I = \int {(2x + 1){e^{3x}}dx} \]

Xem đáp án » 20/12/2024 26

Câu 3:

Cho dạng toàn phương Q: R4 -> R  xác định bởi \[Q\left( {x,y,z,t} \right) = 3{x^2} + 2{y^2} - {z^2} - 2{t^2} + 2xy - 4yz + 2yt\]. Tìm chỉ số quán tính dương p và chỉ số quán tính âm q?

Xem đáp án » 20/12/2024 25

Câu 4:

Cho \[A = \left( {\begin{array}{*{20}{c}}0&2&2\\2&3&{ - 1}\\2&{ - 1}&3\end{array}} \right)\]. Tìm ma trận trực giao P sao cho Pt AP có dạng chéo:

Xem đáp án » 20/12/2024 24

Câu 5:

Cho dạng toàn phương Q: R-> R  xác định bởi \[(x,y) = 2{x^2} - 6xy + {y^2}\].Tìm ma trận của Q trong cơ sở \[\left\{ {v1 = \left( {1,0} \right),v2 = \left( {1,1} \right)} \right\}\]

Xem đáp án » 20/12/2024 23

Câu 6:

Cho \[A = \left( {\begin{array}{*{20}{c}}5&{ - 1}&2\\{ - 1}&5&2\\2&2&2\end{array}} \right)\]. Tìm ma trận trực giao P sao cho Pt AP có dạng chéo:

Xem đáp án » 20/12/2024 20

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store