Câu hỏi:

20/12/2024 64

Xét bài toán: Tính giới hạn \[L = \mathop {\lim }\limits_{n \to 1} \frac{{({e^{\sin x}} - 1)(1 - \cos 2x)}}{{\arcsin x.\ln (1 + {x^2})}}\]

Một sinh viên giải bài toán này theo mấy bước dưới đây: 

Bước 1: Áp dụng quy tắc thay vô cùng bé tương đương, giới hạn trở thành: \[L = \mathop {\lim }\limits_{x \to 1} \frac{{\sin x.2{x^2}}}{{x.{x^2})}}\]

Bước 2: Thay tiếp sinx bởi x và rút gọn ta được: \[L = \mathop {\lim }\limits_{x \to 1} \frac{{x.2{x^2}}}{{x.{x^2}}} = \mathop {\lim }\limits_{x \to 1} 2\]

Bước 3: Vậy giới hạn cần tính là L = 2

Lời giải đó đúng hay sai? Nếu sai thì sai từ bước nào?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

Chọn đáp án B

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giá trị giới hạn \[\mathop {\lim }\limits_{n \to \infty } n(\sqrt {{n^2} + 2} - \sqrt {{n^2} - 1} )\] là:

Xem đáp án » 20/12/2024 279

Câu 2:

Tìm giới hạn \[\mathop {\lim }\limits_{n \to \infty } \frac{{n\cos \frac{1}{n}}}{{{n^2} + n + 1}}\]

Xem đáp án » 20/12/2024 156

Câu 3:

Tìm giới hạn \[\mathop {\lim }\limits_{x \to 16} \frac{{4 - \sqrt x }}{{2 - \sqrt[4]{x}}}\]

Xem đáp án » 20/12/2024 150

Câu 4:

Cho hàm số y=ln(cosx).  Tính \[y'\left( { - \frac{\pi }{3}} \right)\]

Xem đáp án » 20/12/2024 149

Câu 5:

Tìm a để hàm số \[f(x) = \left\{ \begin{array}{l}\frac{{\sin (x - 1)}}{{{x^2} - 1}}(x \ne 1)\\a - \frac{1}{2}(x = 1)\end{array} \right.\]liên tục tại x = 1

Xem đáp án » 20/12/2024 136

Câu 6:

Tính đạo hàm cấp n của hàm số \[y = (x + 1){e^x}\]

Xem đáp án » 20/12/2024 133

Câu 7:

Tìm miền xác định của hàm số \[f(x) = \frac{{\arcsin 2x}}{{1 - 4{x^2}}}\]

Xem đáp án » 20/12/2024 123
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua