Câu hỏi:

20/12/2024 26

Cho hàm số \[f(x,y) = \frac{{xy}}{{\sqrt {1 - {x^2} - {y^2}} }}\]không liên tục tại điểm nào dưới đây:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm f(x,y) có các đạo hàm riêng liên tục đến cấp hai tại điểm dừng M(xo,yo). Đặt: \[A = {f_{xx}}({x_{o,}}{y_o}),B = {f_{xy}}({x_{o,}}{y_o}),C = {f_{xx}}({x_{o,}}{y_o}),{\rm{\Delta }} = {B^2} - AC\]

Khẳng định nào sau đây đúng?

Xem đáp án » 20/12/2024 32

Câu 2:

Tìm a để hàm số \[f(x,y) = \left\{ \begin{array}{l}\frac{{\sqrt {{x^2} + {y^2} + 1 - 1} }}{{{x^2} + {y^2}}},(x,y) \ne (0,0)\\a,(x,y) \ne (0,0)\end{array} \right.\] liên tục tại R2

Xem đáp án » 20/12/2024 31

Câu 3:

Cho hàm số \[f(x,y) = \sin (x - y)\]. Tính \[\frac{{{\partial ^2}f}}{{\partial x\partial y}}\]

Xem đáp án » 20/12/2024 27

Câu 4:

Số điểm dừng của hàm số \[z = {x^3} + {y^3} - 3xy\]là:

Xem đáp án » 20/12/2024 26

Câu 5:

Cho chuỗi \[\sum\limits_{n = 1}^\infty {(\frac{{{n^2} + 2{n^2} + 1}}{{{{(n + 1)}^4}{n_\alpha }}})} \](α là một tham số) hội tụ khi và chỉ khi:

Xem đáp án » 20/12/2024 24

Câu 6:

Cho chuỗi \[\sum\limits_{n = 1}^\infty {{u_n}} \]. Mệnh đề nào sau đây đúng?

Xem đáp án » 20/12/2024 24

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store