Câu hỏi:

20/12/2024 117 Lưu

Chuỗi số dương \[\mathop \sum \limits_{n = 1}^{ + \infty } {u_n}\] hội tụ thì

A. \[{u_n} = 0,\forall n\]

B. \[{u_n} \le 1,\forall n\]

C. \[{u_n} \to 0\]

D. \[\mathop {\lim }\limits_{n \to \infty } \left( {{u_1} + {u_2} + ... + {u_n}} \right) = 0\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Chuỗi (1) hội tụ tuyệt đối

B. Chuỗi (1) phân kỳ

C. Chuỗi (1) hội tụ về 0

D. Chưa đủ điều kiện khẳng định chuỗi (1) hội tụ hay phân kỳ

Lời giải

Chọn đáp án A

Câu 3

A. \[{s_n} = 1 - \frac{1}{n}\]

B. \[{s_n} = 1 - \frac{1}{{n + 1}}\]

C. \[{s_n} = 1 + \frac{1}{{n + 1}}\]

D. \[{s_n} = 1\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{s_n} = \frac{9}{8}(1 - \frac{1}{{{9^{n + 1}}}})\]

B.  \[{s_n} = \frac{1}{8}(1 - \frac{1}{{{9^n}}})\]

C. \[{s_n} = (1 - \frac{1}{{{9^n}}})\]

D. \[{s_n} = \frac{9}{8}(1 - \frac{1}{{{9^n}}})\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Chuỗi (1) hội tụ

B. Chuỗi (1) hội tụ tuyệt đối

C. Chuỗi (1) phân kỳ

D. Chuỗi (1) bán hội tụ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP