Câu hỏi:

12/01/2025 213 Lưu

Mệnh đề nào đúng trong các mệnh đề sau?

A. Góc giữa đường thẳng và mặt phẳng (đường thẳng không vuông góc với mặt phẳng) bằng góc giữa đường thẳng đó và hình chiếu của nó trên mặt phẳng đã cho.

B. Góc giữa đường thẳng \[a\] và mặt phẳng \[\left( P \right)\] bằng góc giữa đường thẳng \[b\] và mặt phẳng \[\left( P \right)\] khi \[a\] và \[b\] song song (hoặc \[a\] trùng với \[b\]).

C. Góc giữa đường thẳng \[a\] và mặt phẳng \[\left( P \right)\] bằng góc giữa đường thẳng \[a\] và mặt phẳng \[\left( Q \right)\] thì mặt phẳng \[\left( P \right)\] song song với mặt phẳng \[\left( Q \right)\].

D. Góc giữa đường thẳng \[a\] và mặt phẳng \[\left( P \right)\] bằng góc giữa đường thẳng \[b\] và mặt phẳng \[\left( P \right)\] thì \[a\] và \[b\] song song.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Nếu đường thẳng \(a\) không vuông góc với mặt phẳng \(\left( P \right)\) thì góc giữa \(a\) và hình chiếu \(a'\) của nó trên \(\left( P \right)\)được gọi là góc giữa đường thẳng \(a\) và mặt phẳng \(\left( P \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Trả lời: 0,84

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình chữ nhật,  A B = 1 , A D = 2 √ 3 . Cạnh bên  S A  vuông góc với đáy, biết tam giác  S A D  có diện tích  S = 3 . Tính khoảng cách từ  C  đến  ( S B D ) . (kết quả làm tròn đến hàng phần trăm). (ảnh 1)

Do \({S_{SAD}} = 3 = \frac{1}{2}SA.AD \Rightarrow SA = \frac{6}{{2\sqrt 3 }} = \sqrt 3 \).

Mặt khác ta có \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right)\).

Kẻ \(AH \bot BD,AK \bot SH\) tại \(K\). Suy ra \(d\left( {A,\left( {SBD} \right)} \right) = AK\).

Ta có \(BD = \sqrt {A{B^2} + A{D^2}} = \sqrt {13} \Rightarrow AH = \frac{{AB.AD}}{{BD}} = \frac{{2\sqrt 3 }}{{\sqrt {13} }} = \frac{{2\sqrt {39} }}{{13}}\).

\( \Rightarrow AK = \frac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }} = \frac{{\sqrt 3 .\frac{{2\sqrt {39} }}{{13}}}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{\left( {\frac{{2\sqrt {39} }}{{13}}} \right)}^2}} }} = \frac{{2\sqrt {51} }}{{17}}\).

Vậy \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right) = \frac{{2\sqrt {51} }}{{17}} \approx 0,84\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP