Câu hỏi:

12/01/2025 326

PHẦN II. TỰ LUẬN

Trong một phòng thí nghiệm, người ta nuôi một loại vi khuẩn. Lúc đầu có 300 vi khuẩn. Sau một giờ, số vi khuẩn là 705 con. Giả sử số vi khuẩn tăng lên theo công thức tăng trưởng mũ, số vi khuẩn sau \(x\) giờ là \(f\left( x \right) = C.{e^{kx}}\). Tính số lượng vi khuẩn có được sau 5 giờ. (kết quả làm tròn đến hàng phần mười).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Lúc đầu có 300 vi khuẩn. Sau 1 giờ số vi khuẩn là 705 con.

Ta có \(\left\{ \begin{array}{l}f\left( 0 \right) = 300 = C.{e^{k.0}} = C\\f\left( 1 \right) = 705 = C.{e^{k.1}} = C.{e^k}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}C = 300\\{e^k} = \frac{{705}}{{300}} = 2,35\end{array} \right.\).

Vậy \(f\left( x \right) = 300.{\left( {2,35} \right)^x}\).

Số lượng vi khuẩn có được sau 5 giờ là \(f\left( 5 \right) = 300.{\left( {2,35} \right)^5} \approx 21501,1\) con.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = 1,AD = 2\sqrt 3 \). Cạnh bên \(SA\) vuông góc với đáy, biết tam giác \(SAD\) có diện tích \(S = 3\). Tính khoảng cách từ \(C\) đến \(\left( {SBD} \right)\). (kết quả làm tròn đến hàng phần trăm).

Xem đáp án » 12/01/2025 5,092

Câu 2:

Cường độ một trận động đất M (richter) được cho bởi công thức \(M = \log A - \log {A_0}\), với \(A\) là biên độ rung chấn tối đa và \({A_0}\) là một biên độ chuẩn (hằng số). Đầu thế kỷ 20, một trận động đất ở San Francisco có cường độ 8 độ Richter. Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh hơn gấp 4 lần. Cường độ của trận động đất ở Nam Mỹ gần với số nào sau đây nhất là

Xem đáp án » 12/01/2025 4,739

Câu 3:

C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 15 đến câu 18.

Với \(a\) là số thực dương tùy ý, biểu thức \({a^{\frac{5}{3}}}.{a^{\frac{1}{3}}}\) được viết dưới dạng \({a^m}\). Tính \(m\).

Xem đáp án » 12/01/2025 1,336

Câu 4:

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(B\). Cạnh bên \(SA\) vuông góc với đáy. \(M\) là trung điểm của \(AC\).

a) \(SA \bot BC\).

b) \(BM \bot \left( {SAC} \right)\).

c) \(BC\) tạo với mặt phẳng \(\left( {SAB} \right)\) một góc có số đo là \(45^\circ \).

d) Mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt phẳng \(\left( {SAC} \right)\).

Xem đáp án » 12/01/2025 1,042

Câu 5:

PHẦN I. TRẮC NGHIỆM KHÁCH QUAN

A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho a là một số thực dương, biểu thức \({a^{\frac{2}{3}}}\sqrt a \)viết dưới dạng lũy thừa với số mũ hữu tỉ là

Xem đáp án » 12/01/2025 831

Câu 6:

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\) và đáy \(ABC\) là tam giác đều. Khẳng định nào sau đây sai?

Xem đáp án » 12/01/2025 497

Câu 7:

Cho \(a > 0,\,a \ne 1\), biểu thức \(D = {\log _{{a^3}}}a\) có giá trị bằng bao nhiêu?

Xem đáp án » 12/01/2025 493