Câu hỏi:
12/01/2025 326Cho bất phương trình \({\left( {3 - 2\sqrt 2 } \right)^{{x^2} - 4x}} > {\left( {3 + 2\sqrt 2 } \right)^{5 - 2x}}\).
a) Ta có : \(3 + 2\sqrt 2 = {\left( {3 - 2\sqrt 2 } \right)^{ - 1}}\).
b) Bất phương trình đã cho tương đương với bất phương trình : \({x^2} - 4x > 2x - 5\).
c) Số nghiệm nguyên của bất phương trình là 5.
d) Tổng các nghiệm nguyên của bất phương trình là 9.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Đ, b) S, c) S, d) Đ
a) \(\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right) = 1 \Rightarrow \left( {3 + 2\sqrt 2 } \right) = \frac{1}{{\left( {3 - 2\sqrt 2 } \right)}} \Rightarrow \left( {3 + 2\sqrt 2 } \right) = {\left( {3 - 2\sqrt 2 } \right)^{ - 1}}\).
b) \({\left( {3 - 2\sqrt 2 } \right)^{{x^2} - 4x}} > {\left( {3 + 2\sqrt 2 } \right)^{5 - 2x}} \Leftrightarrow {\left( {3 - 2\sqrt 2 } \right)^{{x^2} - 4x}} > {\left( {3 - 2\sqrt 2 } \right)^{2x - 5}} \Leftrightarrow {x^2} - 4x < 2x - 5\).
c) \({x^2} - 4x < 2x - 5 \Leftrightarrow {x^2} - 6x + 5 < 0 \Leftrightarrow 1 < x < 5\)
Vậy bất phương trình có 3 nghiệm nguyên là 2; 3; 4.
d) Tổng các nghiệm nguyên là \(2 + 3 + 4 = 9\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu số nguyên thuộc tập xác định của hàm số \(y = \log \left[ {\left( {6 - x} \right)\left( {x + 2} \right)} \right]\)?
Câu 2:
Cho hình chóp \(S.ABC\) có đáy là tam giác vuông cân tại \(B\), \(SA \bot \left( {ABC} \right),AB = BC = a\), \(SA = a\sqrt 3 \).
a) \(BC \bot \left( {SAB} \right)\).
b) Đường thẳng \(BC\) vuông góc với đường thẳng \(SB\).
c) Góc tạo bởi hai đường thẳng \(SB\) và \(AB\) bằng góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\).
d) Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \(45^\circ \).
Câu 3:
Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(B\) và \(SA \bot \left( {ABC} \right)\).
Hình chiếu của \(SC\) lên \(\left( {ABC} \right)\) là
Câu 4:
Cho hình chóp \(S.ABCD\) có đáy là hình vuông. Gọi \(M,N\) lần lượt là trung điểm của \(SA\) và \(SC\).
Chọn khẳng định đúng trong các khẳng định sau:
Câu 5:
Cho \(a,b\) là các số thực dương tùy ý. Khẳng định nào sau đây là đúng?
Câu 6:
Cho hình lập phương \[ABCD.A'B'C'D'\] có cạnh bằng \(a\). Khoảng cách giữa hai đường thẳng \(AC\) và \(A'B'\) bằng bao nhiêu?
Câu 7:
Cho \(a = {\log _2}5,b = {\log _3}5\). Biểu diễn \({\log _6}5\) theo \(a\) và \(b\) ta thu được kết quả dạng \(\frac{a}{{m + \frac{{n.a}}{b}}}\) với \(m;n\) là các số tự nhiên. Tính giá trị \(S = m - 2n\).
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận