Câu hỏi:
12/01/2025 590
B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 13 đến câu 14. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho bất phương trình \({\left( {3 - 2\sqrt 2 } \right)^{{x^2} - 4x}} > {\left( {3 + 2\sqrt 2 } \right)^{5 - 2x}}\).
a) Ta có : \(3 + 2\sqrt 2 = {\left( {3 - 2\sqrt 2 } \right)^{ - 1}}\).
b) Bất phương trình đã cho tương đương với bất phương trình : \({x^2} - 4x > 2x - 5\).
c) Số nghiệm nguyên của bất phương trình là 5.
d) Tổng các nghiệm nguyên của bất phương trình là 9.
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Đ, b) S, c) S, d) Đ
a) \(\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right) = 1 \Rightarrow \left( {3 + 2\sqrt 2 } \right) = \frac{1}{{\left( {3 - 2\sqrt 2 } \right)}} \Rightarrow \left( {3 + 2\sqrt 2 } \right) = {\left( {3 - 2\sqrt 2 } \right)^{ - 1}}\).
b) \({\left( {3 - 2\sqrt 2 } \right)^{{x^2} - 4x}} > {\left( {3 + 2\sqrt 2 } \right)^{5 - 2x}} \Leftrightarrow {\left( {3 - 2\sqrt 2 } \right)^{{x^2} - 4x}} > {\left( {3 - 2\sqrt 2 } \right)^{2x - 5}} \Leftrightarrow {x^2} - 4x < 2x - 5\).
c) \({x^2} - 4x < 2x - 5 \Leftrightarrow {x^2} - 6x + 5 < 0 \Leftrightarrow 1 < x < 5\)
Vậy bất phương trình có 3 nghiệm nguyên là 2; 3; 4.
d) Tổng các nghiệm nguyên là \(2 + 3 + 4 = 9\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Có
\(AA' \bot AC\) và \(AA' \bot A'B'\). Suy ra \(d\left( {AC,A'B'} \right) = AA' = a\).
Lời giải
Hướng dẫn giải
a) Đ, b) Đ, c) Đ, d) S
a) Ta có \(SA \bot BC\) (do \(SA \bot \left( {ABC} \right)\)) và \(BC \bot AB\). Suy ra \(BC \bot \left( {SAB} \right)\).
b) Vì \(BC \bot \left( {SAB} \right)\) nên \(BC \bot SB\).
c) Vì \(AB \bot BC,SB \bot BC\) và \(\left( {SBC} \right) \cap \left( {ABC} \right) = BC\).
Do đó \(\left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \left( {AB,SB} \right) = \widehat {SBA}\).
d) Ta có \(\tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \Rightarrow \widehat {SBA} = 60^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.