Câu hỏi:

12/01/2025 292

Một ngôi nhà có hai mái trước, sau có dạng là các hình chữ nhật \(ABCD,ABMN\) và \(AD = 4\;{\rm{m}}\), \(AN = 3\;{\rm{m}}\), \(DN = 5\;{\rm{m}}\)(hình vẽ minh hoạ). Tính góc nhị diện tạo bởi hai nửa mặt phẳng chứa hai mái nhà đó.

Một ngôi nhà có hai mái trước, sau có dạng là các hình chữ nhật  A B C D , A B M N  và  A D = 4 m ,  A N = 3 m ,  D N = 5 m (hình vẽ minh hoạ). Tính góc nhị diện tạo bởi hai nửa mặt phẳng chứa hai mái nhà đó. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Vì \(\left( {ABCD} \right) \cap \left( {ABMN} \right) = AB\), \(AD \bot AB,AN \bot AB\) nên \(\left( {\left( {ABCD} \right),\left( {ABMN} \right)} \right) = \widehat {DAN}\).

Do đó góc nhị diện tạo bởi hai nửa mặt phẳng chứa hai mái nhà đó là góc \(\widehat {DAN}\).

Xét \(\Delta DAN\) có \(\cos \widehat {DAN} = \frac{{A{N^2} + A{D^2} - D{N^2}}}{{2.AN.AD}}\)\( = \frac{{{3^2} + {4^2} - {5^2}}}{{2.3.4}} = 0\).

Suy ra \(\widehat {DAN} = 90^\circ \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông cân tại \(B\), \(SA \bot \left( {ABC} \right),AB = BC = a\), \(SA = a\sqrt 3 \).

a) \(BC \bot \left( {SAB} \right)\).

b) Đường thẳng \(BC\) vuông góc với đường thẳng \(SB\).

c) Góc tạo bởi hai đường thẳng \(SB\) và \(AB\) bằng góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\).

d) Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \(45^\circ \).

Xem đáp án » 12/01/2025 3,890

Câu 2:

Có bao nhiêu số nguyên thuộc tập xác định của hàm số \(y = \log \left[ {\left( {6 - x} \right)\left( {x + 2} \right)} \right]\)?

Xem đáp án » 12/01/2025 3,626

Câu 3:

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(B\) và \(SA \bot \left( {ABC} \right)\).

Cho hình chóp  S . A B C  có đáy là tam giác vuông tại  B  và  S A ⊥ ( A B C ) .    Hình chiếu của  S C  lên  ( A B C )  là (ảnh 1)

Hình chiếu của \(SC\) lên \(\left( {ABC} \right)\) là

Xem đáp án » 12/01/2025 2,956

Câu 4:

Cho hình chóp \(S.ABCD\) có đáy là hình vuông. Gọi \(M,N\) lần lượt là trung điểm của \(SA\) và \(SC\).

Cho hình chóp  S . A B C D  có đáy là hình vuông. Gọi  M , N  lần lượt là trung điểm của  S A  và  S C .    Chọn khẳng định đúng trong các khẳng định sau: (ảnh 1)

Chọn khẳng định đúng trong các khẳng định sau:

Xem đáp án » 12/01/2025 2,409

Câu 5:

Cho hình lập phương \[ABCD.A'B'C'D'\] có cạnh bằng \(a\). Khoảng cách giữa hai đường thẳng \(AC\) và \(A'B'\) bằng bao nhiêu?

Xem đáp án » 12/01/2025 2,379

Câu 6:

Cho \(a,b\) là các số thực dương tùy ý. Khẳng định nào sau đây là đúng?

Xem đáp án » 12/01/2025 1,463

Câu 7:

C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 15 đến câu 18.

Cho \(a = {\log _2}5,b = {\log _3}5\). Biểu diễn \({\log _6}5\) theo \(a\) và \(b\) ta thu được kết quả dạng \(\frac{a}{{m + \frac{{n.a}}{b}}}\) với \(m;n\) là các số tự nhiên. Tính giá trị \(S = m - 2n\).

Xem đáp án » 12/01/2025 788
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua