Câu hỏi:
12/01/2025 38Cho hình chóp đều \(S.ABC\) có \(ABC\) là tam giác đều cạnh \(a\), cạnh bên \(SA = \frac{{a\sqrt {21} }}{6}\). Gọi \(G\) là trọng tâm của \(\Delta ABC\) và kẻ \(AM \bot BC\).
a) Đường thẳng \(SG\) vuông góc với mặt phẳng \(\left( {ABC} \right)\).
b) \(SM \bot BC\).
c) Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) là góc \(\widehat {SMA}\).
d) Giá trị góc \(\alpha \) giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \(60^\circ \).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Đ, b) Đ, c) Đ, d) Đ
a) Vì hình chóp \(S.ABC\) đều nên \(SG \bot \left( {ABC} \right)\).
b) Vì \(GM\) là hình chiếu của \(SM\) trên mặt phẳng \(\left( {ABC} \right)\) nên \(SM \bot BC\).
c) Có \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SM \bot BC\\AM \bot BC\end{array} \right. \Rightarrow \left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \widehat {SMA} = \widehat {SMG}\).
d) Vì \(\Delta ABC\) đều có \(AM\) là đường trung tuyến, \(G\) là trọng tâm nên \(GM = \frac{1}{3}AM = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\).
Có \(SM = \sqrt {S{B^2} - B{M^2}} = \sqrt {{{\left( {\frac{{a\sqrt {21} }}{6}} \right)}^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{a}{{\sqrt 3 }}\).
d) Tam giác \(SGM\) vuông tại \(G\) nên \(\cos \widehat {SMG} = \frac{{GM}}{{SM}} = \frac{{a\sqrt 3 }}{6}.\frac{{\sqrt 3 }}{a} = \frac{1}{2} \Rightarrow \widehat {SMG} = 60^\circ \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Trong vật lí, sự phân rã các chất phóng xạ được cho bởi công thức \(m\left( t \right) = {m_0}{\left( {\frac{1}{2}} \right)^{\frac{t}{T}}}\). Trong đó, \({m_0}\) là khối lượng chất phóng xạ ban đầu (tại thời điểm \(t = 0\)), \(m\left( t \right)\) là khối lượng chất phóng xạ tại thời điểm \(t\) và \(T\) là chu kì bán rã. Hạt nhân Poloni (\({P_0}\)) là chất phóng xạ \(\alpha \)có chu kì bán rã 138 ngày. Giả sử lúc đầu có 100 Poloni. Tính khối lượng Poloni còn lại sau 100 ngày theo đơn vị gam (làm tròn kết quả đến phần chục).
Câu 3:
Kim tự tháp Memphis tại bang Tennessee (Mỹ) có dạng hình chóp tứ giác đều với chiều cao 98 m và cạnh đáy 180 m. Tính số đo góc tạo bởi mặt bên và mặt đáy của kim tự tháp đó (đơn vị đo góc là độ, làm tròn đến hàng phần chục).
Câu 4:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông. Gọi \(H\) là trung điểm của \(AB\) và \(SH \bot \left( {ABCD} \right)\), gọi \(K\) là trung điểm của cạnh \(AD\). Góc giữa hai đường thẳng \(BK\) và \(SC\) bằng bao nhiêu độ?
Câu 5:
Cho các hàm số \(y = {\log _2}x;y = {\log _{\frac{1}{2}}}x;y = {\left( {\frac{1}{2}} \right)^x}\) và \(y = {2^x}\). Đồ thị hàm số dưới đây là của hàm số nào đã cho?
Câu 6:
Một ngân hàng \(X\), quy định về số tiền nhận được của khách hàng sau \(n\) năm gửi tiền vào ngân hàng tuân theo công thức \(P\left( n \right) = A{\left( {1 + 8\% } \right)^n}\), trong đó \(A\) là số tiền gửi ban đầu của khách hàng. Hỏi số tiền ít nhất mà khách hàng phải gửi là bao nhiêu để sau 3 năm khách hàng đó nhận được lớn hơn 850 triệu đồng (kết quả làm tròn đến hàng triệu).
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
15 câu Trắc nghiệm Đại cương về đường thẳng và mặt phẳng có đáp án (Nhận biết)
100 câu trắc nghiệm Phép dời hình cơ bản (phần 1)
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
về câu hỏi!