Câu hỏi:
12/01/2025 3,580Cho hình chóp đều \(S.ABC\) có \(ABC\) là tam giác đều cạnh \(a\), cạnh bên \(SA = \frac{{a\sqrt {21} }}{6}\). Gọi \(G\) là trọng tâm của \(\Delta ABC\) và kẻ \(AM \bot BC\).
a) Đường thẳng \(SG\) vuông góc với mặt phẳng \(\left( {ABC} \right)\).
b) \(SM \bot BC\).
c) Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) là góc \(\widehat {SMA}\).
d) Giá trị góc \(\alpha \) giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \(60^\circ \).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Đ, b) Đ, c) Đ, d) Đ
a) Vì hình chóp \(S.ABC\) đều nên \(SG \bot \left( {ABC} \right)\).
b) Vì \(GM\) là hình chiếu của \(SM\) trên mặt phẳng \(\left( {ABC} \right)\) nên \(SM \bot BC\).
c) Có \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SM \bot BC\\AM \bot BC\end{array} \right. \Rightarrow \left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \widehat {SMA} = \widehat {SMG}\).
d) Vì \(\Delta ABC\) đều có \(AM\) là đường trung tuyến, \(G\) là trọng tâm nên \(GM = \frac{1}{3}AM = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\).
Có \(SM = \sqrt {S{B^2} - B{M^2}} = \sqrt {{{\left( {\frac{{a\sqrt {21} }}{6}} \right)}^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{a}{{\sqrt 3 }}\).
d) Tam giác \(SGM\) vuông tại \(G\) nên \(\cos \widehat {SMG} = \frac{{GM}}{{SM}} = \frac{{a\sqrt 3 }}{6}.\frac{{\sqrt 3 }}{a} = \frac{1}{2} \Rightarrow \widehat {SMG} = 60^\circ \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Trả lời: 90
Vì \(\Delta ABK = \Delta BCH\) (\(AB = BC,AK = BH,\widehat {KAB} = \widehat {CBH} = 90^\circ \)) nên \(\widehat {BHC} = \widehat {BKA}\).
Có \(\widehat {ABK} + \widehat {BKA} = 90^\circ \Rightarrow \widehat {ABK} + \widehat {BHC} = 90^\circ \)\( \Rightarrow BK \bot CH\)(1).
Mà \(SH \bot \left( {ABCD} \right) \Rightarrow SH \bot BK\) (2).
Từ (1) và (2), ta có \(BK \bot \left( {SCH} \right) \Rightarrow BK \bot SC\).
Do đó \(\left( {BK,SC} \right) = 90^\circ \).
Lời giải
Đáp án đúng là: A
\(\left\{ \begin{array}{l}a \bot \left( \alpha \right)\\a \subset \left( \beta \right)\end{array} \right. \Rightarrow \left( \alpha \right) \bot \left( \beta \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.